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Official Statistics

* Increased
* Nonresponse to surveys

* Demand for more granular data
* Faster, more frequent
* More geographic detail

* Demand for more privacy

* Intolerance for errors

* Decreased funding, personnel, ....



Use Multiple Sources

* Surveys

* Administrative Data (e.g. tax records)
* Sensor Data

» Social media, internet searches?

* How to combine?
* How to estimate uncertainty?



US Adult (age 18+) Smoking, 2014-15
Siegfried et al. (2017)
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US rape/sexual assault rate, 2015
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Lohr (2019) Measuring Crime: Behind the Statistics, CRC Press



Uniform Crime Reports (UCR)

* From police agencies
* Intended to be census
* No measures of uncertainty

* Errors from measurement, missing
data are little studied

* Imputation method: from 1958



Uncertainty about Statistics from
Combined Data

* Sampling error from sources

* Nonsampling error from sources
* Differences across sources

* Method used to combine




How to Combine?

* Lohr and Raghunathan (2017),
Statistical Science

» Federal Statistics, Multiple Data
Sources, and Privacy Protection:

Next Steps (National Academies of
Sciences, 2017)



Methods

* Record Linkage

* Small Area Estimation

* Imputation

* Multiple Frame Methods
* Hierarchical Models
 Calibration



Multiple Frame Methods

Administrative Survey
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Multiple Frame Methods

* Estimated total = sum of domains

- Traditional MF: V(Y) is function of

Cov(estimated domain totals) from
each source

e Assumes
 Each source has unbiased estimates
« Domain classifications accurate

+ Lohr (2011), Lin (2013)



Hierarchical Models

* Related to meta-analysis

* Manzi et al (2011) model for mean u,; in
domain d, source j:

Ugj = Hd + 6d] + €dj
domain random effect sampling
mean ~N(Aj,rjz) error

 |ots of variations



Hierarchical Models Can

» Capture between-source variability

 Explicitly model bias
* Need to define source or combination
as unbiased
» Use prior information on source
reliability, bias
* Include domain-level and record-
level data



Hierarchical Models

» Strong assumptions on bias, model
form
* Do we have gold standard source?

* Survey weights, nonresponse,
overlap

» Sensitive to prior information, model
* Model is explicit



Calibration

* Survey Data (y)
* Administrative Data (x)
* Adjust survey weights so

P

Estimated Total of x from Survey, X

Total of x from Admin Data, X



Calibration Uncertainty

* Assume X from admin data is known
* Assume “true” model is known
» Case: X = subpopulation counts

. s s (W ¥
Vs =XY, Y= S
X1 Xe

V(Fps) ~ X'V( )X



Dever & Valliant (2010, 2016)

* X measured with error

X /

1719 = Xaux

=D

V(%) ~ XV(Y )X + 7'V (R )Y



Primary Poll Postmortems
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W. Edwards Deming

» Special Causes:
factors that affect one
survey

 Common Causes:
systems features that
affect all surveys

www.deming.org
19



Systems problems need
systems solutions



New York Times Live Polls

* [llinois 6th Congressional District
» September 4-6, 2018

« Sampling Frame: Voter File

« 36,455 calls to likely voters

* 512 respondents

*1.4% response rate



Che New Hork Eimes
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Source: https://www.nytimes.com/interactive/2018/upshot/elections-poll-il06-1.html



Poll Result

* Roskam (Republican, Incumbent)
45% + 4.7 %

» Casten (Democrat)
44% + 4.7 %

* Undecided 11%

* Republican Lead: 1% + 9%,




But

*1.4% Response Rate!
* 2 months before election!

» Strong assumptions for
* Weighting
* Who votes
* What undecideds will do



lllinois CD 6 Race
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Bayesian Model Averaging

* Hoeting et al. (1999); Lohr & Brick (2017)
* Models My, ..., Mg

K
pr(Y 1D) = > pr(Y My, D) pr(My| D)
k=1

pr (M, |D) = posterior for model M,



Inference

* Posterior mean
* Weighted average of estimates
* Weighted by pr(M;| D)
» Posterior variance includes
« Sampling variability
* Model uncertainty



lllinois CD 6 Race
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Model weights?

* Posterior model probabilities
* From past data

 “Past performance does not
guarantee future results”



But it's (gasp) Bayesian!

* | prefer design-based inference
* Avoid model assumptions
* No subjective priors
* Elegant mathematical theory

* With nonresponse, all survey
inference is Bayesian
* Certainty prior on one model



Objections

* Subjective

« Easy to cheat
* Cherry-pick models

* Incentives for survey-takers to have
small measures of uncertainty

* Register priors before data collected?
* Make assumptions explicit



US rape/sexual assault rate, 2015
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Percent of Victims

National Incident-Based Reporting
System, 2015 (1/3 of agencies)
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Adult (age 18+) Smoking
Siegfried et al. (2017)
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Percent Smoked at Least 100 Cigarettes in Lifetime
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Zeroth Problem

* Colin Mallows, 1997 Fisher Lecture
 American Statistician, Feb 1998

* Consider relevance of data sources
to the problem

« “Statistical arguments often falil
because the basis for their
assumptions is not spelled out.”



Multiple sources

» Statistics from merged data
* Explore error properties

* Present alternative views
 Diversity is a strength




Inferences for combined data

* All use models for relationships
among sources

* Depend on uncertainty measures for
individual sources
» Often underestimates
* Inherited by combined estimate



Summary

* Use multiple sources to study quality

» Standard errors:
« Systems-level problem
* Include measurement, nonresponse
* Variability from weighting models

* Industry standards
* Transparency
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