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Making research results relevant: A range of policy or
practice questions

• Medicare may be deciding whether or not to approve payment
for a new treatment for back pain

• Interest in predicting overall population impacts of a broad
public health media campaign around not switching car seats
to forward facing until a child is 12 months old

• A health care system may be trying to predict the effects of an
evidence-based intervention in their overall patient population

• A physician practice may be deciding whether training
providers in a new intervention would be cost effective across
their population
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Estimating Effects: Randomized Trials

• Randomized trials are gold standard for estimating causal
effect of a treatment in a study sample

• Strong internal validity allows for unbiased estimation of the
sample average treatment effect (SATE)

• However, some policy questions require estimating the target
population average treatment effect (TATE), not SATE
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Issue: RCTs May Not Generalize

• Randomized trials often have poor external validity
(generalizability) (Weisberg et al., 2009)

• Potential reasons for this:
• Strict exclusion criteria (Stuart et al., 2011)
• Lack of attention to target population when implementing trial

• SATE may not equal TATE (Cole and Stuart, 2010)
• If distribution of treatment effect modifier (TEM) differs in trial

and target population

• Note: Similar issues arising in debates about non-probability
samples in survey world
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Methods to Improve Generalizability
Study Design

• Random sampling (great, but rare)

• Purposive sampling (not formally representative)

• Practical clinical trials (potentially useful, but expensive and
still lacks formal representativeness)

• Main idea: select subjects for trial in a particular way
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Methods to Improve Generalizability
Post-Hoc Analysis

• Weighting trial sample by odds of trial participation to
resemble target population

• Similar to propensity score ATT weighting in non-experimental
studies

• Model outcome as (flexible) function of observed covariates in
trial and predict outcome in target population

• BART: Bayesian Additive Regression Trees (Hill, 2010; Kern et
al., 2016), TMLE (Rudolph et al., 2014)

• Doubly robust methods, fitting models for both the outcome
and the probability of trial participation (Dahabreh et al., 2018)
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Methods to Improve Generalizability
Implementation

• Methods require full data sets of TEMs for individuals in both
trial and target population (not just summary statistics!)

• Software in the works for easy implementation (Ackerman et
al., 2019)
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Assumptions*

1 All members of target population have nonzero probability of
trial selection

2 Range of effect modifiers in target population are covered by
respective ranges in the trial

3 Treatment assignment is independent of sample selection, as
well as potential outcomes, given pre-treatment covariates

4 No unmeasured variables associated with sample selection
and treatment effect

*These are required for the standard weighting and outcome model based
strategies
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What if
• there is an treatment effect modifier (TEM) observed in the

trial but we don’t have data on it from the target population?

• we are concerned there might be TEMs that are not even
observed in the trial (fully unobserved)?
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Issue of Unobserved TEMs

• Unobserved TEMs likely very common in real data scenarios

• In real data, often few covariates observed consistently
between trial and population data (Stuart and Rhodes, 2017)

• Today will focus on parametric sensitivity analysis strategy;
bounding another possibility (Chan, 2018)
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Sensitivity Analyses for Generalizing RCT Findings to Population:
Two Cases

• TEM observed in the trial but unobserved in the target
population (V case)

• Any potential TEMs unobserved in both the trial and the target
population (U case)

analogous to sensitivity analyses for unobserved confounding in
non-experimental settings (Rosenbaum and Rubin, 1983; VanderWeele,
2011)
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Notation

A: treatment (0,1) randomized in trial
Y : outcome (observed only in the trial)
Y (a): potential outcome under treatment a
S: sample membership

Si =

{
1 if individual i is in trial

0 if individual i is in target population

SATE = E [Y (1)− Y (0)|S = 1]

TATE = E [Y (1)− Y (0)|S = 0]
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Notation

X : non-effect modifying covariates
Z : effect modifier, fully observed in trial and population

V : partially unobserved effect modifier (observed in trial, not
population)
U: fully unobserved effect modifier
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For a partially unobserved effect modifier (V case)

Assume the following outcome model:

E [Yi ] = β0 + βaAi + βzaZiAi + βvaViAi + fxzv (Xi ,Zi ,Vi)

Therefore,

TATE = βa + βzaE [Z | S = 0] + βvaE [V | S = 0]

©2019, Johns Hopkins University. All rights reserved



For a partially unobserved effect modifier (V case)

TATE = βa + βzaE [Z | S = 0] + βvaE [V | S = 0]

1 Outcome-model-based sensitivity analysis
i. estimate βa, βza, βva using trial data
ii. obtain E [Z |S = 0] and specify range for E [V | S = 0]
iii. combine

2 Weighted-outcome-model-based sensitivity analysis
. weight trial sample to resemble target population w.r.t. X ,Z
i. estimate βa, βza, βva using trial data
ii. obtain E [Z |S = 0] and specify range for E [V | S = 0]
iii. combine
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Example of a V case
Smoking cessation intervention for heavy smokers among attendants of
alcohol/substance abuse treatment: SATE = 10 fewer cigarettes per day

• Z : being African-American, baseline daily number of cigarettes

• V : baseline addiction score; E [V | S = 1] = 4.05

Target pop: people who seek alcohol/substance treatment who smoke
heavily
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For fully unobserved effect modification (U case)

U: the remaining composite effect modifier

• captures all unobserved factors that modify treatment effects

• independent of observed covariates and effect modifiers

Unlike the V case, we cannot use

TATE = βa + βza[Z | S = 0] + βua[U | S = 0]

for sensitivity analysis
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For fully unobserved effect modification (U case)

We hope to use a bias formula instead:

TATE = SATE + βza{[Z | S = 0]− [Z | S = 1]}+
+ βua{[U | S = 0]− [U | S = 1]}

Let ∆u = E [U|S = 0]− E [U|S = 1]

TATE = SATE + βza{E [Z | S = 0]− E [Z | S = 1]}+ βua∆u

TATE = wtd.ATE + βza

{
E [Z | S = 0]−

∑
Wi (Si = 1)Zi∑
Wi (Si = 1)

}
+ βua∆u

≈ wtd.ATE + βua∆u
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For fully unobserved effect modification (U case)
1 Bias-formula-based sensitivity analysis

TATE = SATE + βza{E [Z | S = 0]− E [Z | S = 1]}+ βua∆u

i. estimate SATE, E [Z | S = 1] and βza using trial data
ii. obtain estimate for E [Z | S = 0], specify ranges for βua and ∆u

iii. combine

2 Weighting-plus-bias-formula-based sensitivity analysis

TATE = wtd.ATE + βza

{
E [Z | S = 0]−

∑
Wi (Si = 1)Zi∑
Wi (Si = 1)

}
+ βua∆u

. weight trial sample to resemble target population w.r.t. X ,Z
i. estimate wtd.SATE,

∑
Wi (Si=1)Zi∑
Wi (Si=1) and βza using trial data

ii. obtain estimate for E [Z | S = 0], specify ranges for βua and ∆u

iii. combine
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Example of a U case (data artificially altered)

Trial comparing a new antiretroviral therapy regimen to an old one:
SATE = increase CD4 count by 36 cells/ml at 2 months post treatment

• Z : being White and without severe immune suppression (interaction
term coef ≈ −15), age (interaction term coef ≈ 11 per SD)

• concerned about U: specify ∆u = (0, 0.7) and βua = (−15, 15)

Target population: people with HIV in the US
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Extension to Binary Outcomes (V case)

What if the primary outcome in the trial is not continuous, but
binary?
Let Pa = probability of outcome occurring under treatment "a"

TATE = E

[
Ptreat/(1− Ptreat )

Pcontrol/(1− Pcontrol)

∣∣∣S = 0

]
Assume the following outcome model:

logit(P(Yi = 1)) = β0 + βaAi + βzaZiAi + βvaViAi + fxzv (Xi ,Zi ,Vi)

Therefore,

TATE = E [exp{βa + βzaZ + βvaV}|S = 0]
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Extension to Binary Outcomes (V case)

but V is unmeasured in the population, so E [eβvaV |S = 0] is
unknown. Using MGFs and assuming Z and V to be Normal,

TATE = λ× exp
{
βvaE [V |S = 0] +

1
2
β2

vavar(V |S = 0)
}

where λ = exp{βa + βzaE [Z |S = 0] + 1
2β

2
zavar(Z |S = 0)}

Can then perform same sensitivity analyses for V case (outcome model
or weighting)

• Must make additional assumptions about the distribution of V and Z
in the population

• Can hold one unknown fixed, or vary both together
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Conclusion

• Methods exist to improve upon generalizability of RCTs when
drawing population-level inferences

• Population data availability is a primary limiting factor for
satisfying assumption of no unobserved TEMs

• Proposed sensitivity analyses for generalizing average
treatment effects when TEMs are both partially and fully
unobserved

• While sensitivity analyses are helpful when some variables
are not observed, they are not a panacea
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Thank you!

Benjamin Ackerman
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health

backer10@jhu.edu
@backerman150

www.benjaminackerman.com
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