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Areal Data Consisting of Counts: Examples

Numbers of a given invasive species distributed over small areas.

Health studies : Number (or rates) of individuals with a disease.

Remote sensing of the environment : Number of pixels within a small region
having some desired property (e.g., number of cloudy pixels).

Socio-economic studies : Unemployment rates by counties.
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An Example: Count Data Over the Counties of NC
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under 0.54
0.54 − 0.699
0.699 − 0.931
0.931 − 1.111
1.111 − 1.442
1.442 − 1.97
over 1.97

Chloropleth map of counties of NC showing the standardized mortality ratio (SMR) of
SIDS, namely the ratio of (observed # SIDs)/(expected # SIDs).
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Common Modeling Approaches for Count Data

Modeling approaches based on a Markov random field (e.g., Besag et al. [1991],
Cressie [1993], Rue and Held [2005]).

Poisson kriging (e.g., Monestiez et al. [2006])

Approximate Gaussian models (e.g., Cressie and Chan [1989])

Fully Bayesian approach for geostatistical models based on stationarity
assumptions (e.g., Diggle et al. [1998], Zhang [2002]).

Our Hierarchical Modeling Strategy: Count data is modeled through a Generalized
Linear Mixed Model (GLMM) (e.g., Diggle et al. [1998]), where the data, conditional on
an underlying spatial process, has a Poisson distribution. The hidden underlying
spatial process is modeled using a transformed spatial Gaussian Field (GF) whose
means, variances, and covariances depend on unknown parameters. We estimate the
parameters and predict the hidden spatial process. (The Poisson assumption can be
expanded to one involving a zero-inflated Poisson; see Sengupta et al. [2012].)
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Hierarchical Statistical Modeling (HM)

Step away from remote sensing for the moment to get a broader
perspective on uncertainty quantification in science.

Let Y be the data, X be the process (or state) of interest, and θ be
unknown parameters. (For example, in my research in
spatio-temporal statistics, Y might have dimension 106 − 109, X

might be of the same order, and θ might have dimension 102 − 104.)

[A|B] denotes the conditional distribution of generic quantity A, given
generic quantity B; and [B] denotes the distribution of B.

[A,B] denotes the joint distribution of A and B. Then

[A,B] = [A|B] · [B].
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HM Captures Sources of Uncertainty

Sources of uncertainty: the data, the process, and the parameters.

All uncertainties can be expressed through the joint distribution,
[Y, X, θ]. From the previous slide,

[Y, X, θ] = [Y, X|θ] · [θ]

= [Y |X, θ] · [X |θ] · [θ]

Data model: [Y |X, θ]

Process model: [X |θ]

Parameter model: [θ]

This implies an additive decomposition of the joint entropy:
E(log [Y, X, θ]) = E(log [Y |X, θ]) + E(log [X |θ]) + E(log [θ]).
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Predictive Distribution

Three cases:

0. θ is known, and hence the parameter model is degenerate at θ.
The posterior distribution is [X |Y, θ] – since θ is known, this is
also the predictive distribution.

1. θ is fixed but unknown, and it is estimated from the data Y ; call
the estimate ̂θ. The parameter model is assumed degenerate at ̂θ

and the (empirical) predictive distribution is [X |Y, ̂θ].

2. θ is unknown, and its uncertainty is captured with the parameter
model [θ]. The posterior distribution is [X, θ|Y ], and the predictive
distribution is [X |Y ].

Case 0. is often unrealistic; case 1. is called empirical hierarchical
modeling (EHM); and case 2. is called Bayesian hierarchical
modeling (BHM).
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Inference on the StateX

X and θ appear asymmetrically: there is usually more interest in
inference on X .

Since X is uncertain, it is modeled as a random quantity. Inference
on a random quantity is sometimes called “prediction.” Hence, we
use the term predictive distribution; for the three cases, it is:

Case 0. [X |Y, θ] = [Y |X, θ] · [X |θ]/[Y |θ]

Case 1. [X |Y, ̂θ] = [Y |X, ̂θ] · [X |̂θ]/[Y |̂θ],

Case 2. [X |Y ] =
∫

[Y |X, θ] · [X |θ] · [θ]dθ/[Y ],

and it is not always the same as the posterior distribution.

We still say “estimation of X ,” rather than prediction of X .

Inference on X should be based on the predictive distribution. This is
fundamental to Uncertainty Quantification!
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Computational Issues

Hierarchical modeling approaches that are based on a full-rank model for the
underlying spatial process, are not computationally feasible when the data size is
large.

Reduced-rank modeling approaches for the underlying spatial GF have been
developed to deal with this computational challenge (e.g., Wikle [2002], Cressie
and Johannesson [2006, 2008], Banerjee et al. [2008], Stein [2008], Lopes et al.
[2008, 2011]).

Many of the spatial and spatio-temporal applications for very-large-to-massive
datasets center around reduced-rank representations of geostatistical models,
where the hidden process is modeled using a continuous GF (e.g., see the review
in Wikle [2010]).

Lindgren et al. [2011] show how the underlying spatial process can be modeled
using a Gaussian Markov Random Field (GMRF) in a computationally efficient
manner.
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Spatial Statistical Modeling Strategy

Classical spatial statistical models:

Non hierarchical models based on a MRF often give rise to complicated
likelihoods and computational bottlenecks.

Spatial outliers can be difficult to deal with in a nonhierarchical model.

Stationarity or homogeneity assumptions are not valid in a lot of situations
(e.g., ecological modeling of an invasive species).

Parameters: We want to capture sources of variability but avoid putting
inappropriate priors on parameters. This is what a classical geostatistical analysis
does.

We propose:

a data model based on the Poisson distribution;

a spatial statistical process model based on a (log) Gaussian geostatistical
SRE model (Cressie and Johannesson [2006, 2008]);

parameters that are fixed but unknown (and hence will be estimated).
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Model Specification for Areal Count Data

Let the spatially related areas be {Ai : 1 = 1, . . . , N} located at
{si : i = 1, . . . , N}. The ordering of the indices is unimportant.

The spatial domain of interest is
SN

i=1 Ai; define the spatial index set
D ≡ {s1, . . . , sN}.

Some (or all) of the areas have counts, {Z(si) : i = 1, . . . , n}, associated with
them, where n ≤ N . Hence {sn+1, . . . , sN} represents areas {An+1, . . . , AN}

where there are no data.

The observations are ZO ≡ (Z(s1), . . . , Z(sn))⊤.
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Model Specification for Areal Count Data [cont.]

Data model: Counts, Z(si)|µZ|Y (si) ∼ ind. Poisson(µZ|Y (si)); i = 1, . . . n. The
set {si : i = 1, . . . , n} is the set of locations of small areas where there are data.
The mean count µZ|Y (si) is modeled for all i = 1, . . . , N . Note that the data
model can be generalized to the zero-inflated Poisson.

Link function:

Y (si) = log(µZ|Y (si)),

where log(·) is the link function. Note that other link functions are possible.

Process model:

Y ∼ N(µY ,ΣY ).

Y ≡ (Y (s1), . . . , Y (sN ))⊤, where N ≥ n.

The set {si : i = 1, . . . , N} is the set of all locations. Recall that the locations
{sn+1, . . . , sN} represent small areas where there are no data.

The process model captures spatial dependencies through ΣY (geostatistical
model); cf. capturing spatial dependence using Σ

−1
Y

(GMRF model or spatial
econometric model).
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SRE Model: A Component of the Hidden ProcessY (·)

Model for Y (·): Y (·) = C(·) + x(·)⊤β + W (·)
n

S(·)⊤η + ξ(·)
o

C(·) is a known offset term and W (·) is a known weight.

x(·)⊤β is the large-scale spatial variation.

S(·) is the r-dimensional vector of multiresolution spatial basis functions.

η is an r-dimensional vector of random effects, where r << n ≤ N .

Distribution for η: [η|K] ∼ N(0,K).

ξ(·) is spatially unstructured and represents fine-scale variability:

ξ(·) ∼ ind. N(0, σ2
ξvξ(·)), where σ2

ξ > 0 and vξ(·) is known.

Covariance matrix for Y (Cressie and Johannesson [2008]):

ΣY = W
“

SKS⊤ + σ2
ξVξ

”

W, where Vξ ≡ diag(vξ(s1), . . . , vξ(sN )) and W

are N × N diagonal matrices.

Denote: Vξ,O = diag(vξ(s1), . . . , vξ(sn)).

– p.10/54



Goal of our Research

Our ultimate goal is inference on Y (s); s ∈ D ≡ {si : i = 1, . . . , N} from the
count data ZO .

We want to make predictions on Y, from the predictive distribution,
[Y|ZO, β,K, σ2

ξ ], which is conditional on ZO and the parameters.

This predictive distribution is obtained using Bayes’ Theorem, but usually it
cannot be obtained in closed form.

We use MCMC samples from [η, ξ|ZO, β,K, σ2
ξ ]. Efficient MCMC

computations are needed when n is very large.

Now assume that parameters β, K, and σ2
ξ are fixed but unknown, and we shall

estimate them.

The model is called an Empirical Hierarchical Model (EHM), resulting in
Empirical-Bayesian inference.
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Inference for the Hierarchical Model

We need the predictive distribution, [η, ξ|ZO, θ], where in practice, the estimate
θ̂ ≡ {β̂,K̂, σ̂2

ξ}, is substituted in for θ.

Let ξ⊤ ≡
`

ξ⊤
O , ξ⊤

U

´

, where ξ⊤
O = (ξ(s1), . . . , ξ(sn)), and

ξ⊤
U = (ξ(sn+1), . . . , ξ(sN )).

ξU is independent of ZO, ξO, η (conditional on θ); hence,

[ξU |ZO, ξO, η, θ] = [ξU |θ].

So, for all s ∈ {n + 1, . . . , N}, we have:

E(ξ(s)|ZO, ξO, η, θ) = E(ξ(s)|θ) = 0

var(ξ(s)|ZO, ξO, η, θ) = var(ξ(s)|θ) = σ2
ξvξ(s).

Hence, we only need MCMC samples from the predictive distribution,
[η, ξO|ZO, θ], where recall that θ = θ̂ is “plugged in.”
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EM Algorithm: Review

Suppose we observe Xobs ∼ f(xobs|θ), and we are interested in finding the MLE
of θ.

If maximizing L(θ) ≡ f(xobs|θ) is hard, but maximizing the complete data
likelihood, Lc(θ|xobs, xmis) ≡ f(xobs, xmis|θ), is easy, we can use the EM
algorithm to find the MLE of θ.

The EM algorithm (Dempster et al. [1997]): Start with θ[0], and repeat the following
steps until convergence:

E-step: Calculate

Q(θ, θ[l]) ≡ Eθ[l] {log f(xobs, Xmis|θ)|xobs} = Eθ[l] (log(Lc(θ|xobs, Xmis))|xobs) .

M-Step: Calculate θ[l+1] = arg maxθ Q(θ, θ[l]).
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North Carolina SIDS Data (1974-78)

The hierarchical model above is used to analyze the well known dataset that
contains information on Sudden Infant Death Syndrome (SIDS) from 1974 to 1978,
for the 100 counties of North Carolina (NC). Here s1, . . . , s100 are the centroids of
the counties, numbered alphabetically by county name.

SIDS is a classification of death for healthy infants under one year of age.

Cressie and Chan [1989] analyzed the NC SIDS data using a model based on the
Freeman-Tukey transformation.

We directly model SIDS for the N = n = 100 counties of NC using the hierarchical
Poisson SRE model, where parameters are estimated. Note that Cressie and
Chan [1989] omitted county 4 as an outlier (for them, n=99); we include county 4 in
our analysis below.
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Counties of North Carolina (NC)
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County index from 1, . . . , 100 (top panel); and 12 contiguous regions for the counties of
NC, where county 4 is shown in red (bottom panel).
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Standardized Mortality Ratio (SMR) of SIDS

under 0.54
0.54 − 0.699
0.699 − 0.931
0.931 − 1.111
1.111 − 1.442
1.442 − 1.97
over 1.97

Chloropleth map of counties of NC showing the standardized mortality ratio (SMR) of
SIDS, namely the ratio of (observed # SIDs)/(expected # SIDs).
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Notation

Z(si) denotes the observed number of SIDS in county i, i = 1, . . . 100.

E(si) is the expected number of SIDS in county i, obtained from internal
standardization:

E(si) =

4
X

k=1

Bk(si)

0

@

100
X

j=1

Zk(sj)/

100
X

j=1

Bk(sj)

1

A , i = 1, . . . 100.

k = 1, . . . , 4 represents the subgroups, "white male," "white female,"
"non-white male," and "non-white female," respectively.

Zk(si): observed number of SIDS for subgroup k in county i, i = 1, . . . 100.

Bk(si): total number of live births for subgroup k in county i, i = 1, . . . 100.

SMR(si) is the standardized mortality ratio (SMR) in county i, and it is defined as

SMR(si) = Z(si)/E(si), i = 1, . . . 100.

SMR(·) estimates the relative risk, λ(·) ≡ µZ|Y (·)/E(·).
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Exploratory Study

The Freeman-Tukey transformation of counts is essentially the square-root
transformation; it removes dependence between the mean and the variance.

FTNR(si): Freeman-Tukey transformed non-white live birth rate in county i.

FTSIDS(si): Freeman-Tukey transformed SIDS rate in county i.

Scatter plot of FTSIDS against FTNR justifies using FTNR as a covariate,
along with the vector of 1s. County 4 is shown as a red "+".
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Standard GLM Approach

Z(si)|µZ(si) ∼ ind. Poisson (µZ(si)).

µZ(si) ≡ λ(si)E(si) is the mean count.

λ(si) is the relative risk for county i, where

λ(si) = µZ(si)/E(si)

GLM for the mean count:

log(µZ(·)) = log(λ(·)E(·)) = log(E(·)) + x(·)⊤β

The GLM estimate of λ(·):

λ̂GLM (·) = exp(x(·)⊤β̂GLM ).

β̂GLM is obtained by iteratively reweighted least squares.
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Predicted Relative Risk based on the Standard GLM

under 0.54
0.54 − 0.699
0.699 − 0.931
0.931 − 1.111
1.111 − 1.442
1.442 − 1.97
over 1.97

Predicted relative risk, λ̂GLM (·), based on the GLM discussed above.
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Residual Diagnostic Plots for the Standard GLM Fit
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Standard GLM Fit
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Predicted relative risk, λ̂GLM (·), versus the observed relative risk, SMR(·). County 4
shown as a red "+".

– p.39/54



Hierarchical Modeling of Counts Based on the SRE Model

Data Model: Z(si)|λ(si) ∼ ind. Poisson (E(si)λ(si)).

λ(si) is the relative risk for county i.

Process Model: Y (si) = log(E(si)λ(si)) =

log(E(si)) + β0 + β1FTNR(si) + E(si)
−1/2

˘

S(si)
⊤η + ξ(si)

¯

.

C(si) = log(E(si)) is the offset term and W (si) = E(si)
−1/2 is the weight.

η ∼ N(0,K), is 13-dimensional: 12 random effects for the 12 contiguous
regions of North Carolina, and one random effect is for county 4, which was
previously detected as an outlier (Cressie and Chan [1989]). That is, r=13.

For j = 1, . . . , 12, and i = 1, . . . , 100, Sj(si) = 1 if the i-th county is in the
j-th region, and it is 0 otherwise; and S13(si) = 1 if i = 4, and it is 0

otherwise.

ξ(si) ∼ ind. N(0, σ2
ξ ), which models the extra-Poisson variability.

log(λ(·)) = β0 + β1FTNR(·) + E(·)−1/2
˘

S(·)⊤η + ξ(·)
¯

is the
log relative risk.
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Statistical Analysis of the Data

The hidden process Y (·) is spatially dependent, but it is not a MRF. Its spatial
dependence comes from a (geostatistical) SRE model; computations are fast
because the Sherman-Morrson-Woodbury formula can be used:

(A + UBV)−1 = A−1 − A−1U(B−1 + VA−1U)−1VA−1.

n

β,K, σ2
ξ

o

are estimated using the EM algorithm with a Laplace Approximation

in the E-step.

For inference on Y, we use the empirical predictive distribution,

[Y (·)|ZO, β̂EM , K̂EM , σ̂2
ξ,EM ],

which is obtained using MCMC.
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Trend Component : log(E(·)) + x(·)⊤β̂EM

under −0.441
−0.441 − 0.353
0.353 − 1.042
1.042 − 1.744
1.744 − 2.126
2.126 − 3.153
over 3.153
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Predictive Mean of the Random Effects :E(·)−1/2E(S(·)⊤η|ZO, θ̂EM )

under −0.53
−0.53 − −0.066
−0.066 − −0.036
−0.036 − 0.145
0.145 − 0.285
0.285 − 0.497
over 0.497
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Predictive Mean of Extra Poisson Variability: E(·)−1/2E(ξ(·)|ZO, θ̂EM )

under −0.123
−0.123 − −0.072
−0.072 − −0.042
−0.042 − 0.023
0.023 − 0.068
0.068 − 0.154
over 0.154
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Predictive Mean of the Sum:E(Y (·)|ZO, θ̂EM )

under −0.469
−0.469 − 0.315
0.315 − 1.049
1.049 − 1.803
1.803 − 2.264
2.264 − 3.111
over 3.111
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Predictive Mean and S.D. of Relative Risk:
[

exp (Y (·)) /E(·)|ZO, θ̂EM

]

under 0.54
0.54 − 0.699
0.699 − 0.931
0.931 − 1.111
1.111 − 1.442
1.442 − 1.97
over 1.97

under 0.171
0.171 − 0.264
0.264 − 0.288
0.288 − 0.364
0.364 − 0.4
0.4 − 0.486
over 0.486

Predictive mean (top panel) and predictive standard deviation (bottom panel) of the
relative risk.
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Model Fit
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Predictive mean of the relative risk, E(λ(·)|ZO, θ̂EM ), versus the observed relative risk,
SMR(·). County 4 is shown as a red "+". (Counties with zero counts are predicted to be
above or below 1, according to their spatial dependence on nearby counties.)
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Simulation Study: Computational Efficiency

A simulation experiment was performed for a large dataset (N = 90, 000, on a
300 × 300 regular grid).

The log mean, Y, was simulated from a Gaussian process.

A realization of counts Z was simulated with mean exp(Y), and n ≤ N points
were sampled as the data (ZO).

EM Estimation: We estimated the parameters (using EM estimation) from the sampled
data ZO . Computation times were recorded for sample size n.

MCMC: We used an MCMC algorithm to generate 10, 000 samples from the target
predictive distribution, after allowing for a burn-in of size 2, 000. Computation times were
recorded for sample size n.

The experiment was repeated for four different values of n (n = 5, 000; n = 20, 000;
n = 35, 000; and n = 50, 000).
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Computation Time as a Function ofn
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Plot showing the time taken for EM estimation (dark-gray region) plus the time taken for
MCMC implementation (light-gray region), as a function of sample size n. Computation
times are clearly O(n).
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