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 Introduction to SAE

 Bayesian and Frequentist Approaches

 BFI in SAE for hierarchical benchmarking 

 Building block small area modeling (BBSAM) of totals for 

compatibility between different levels of aggregation

 Grouping of BBs for stabilizing V-C matrix of sampling 

errors and for their approximate normality

 Modeling over time for estimating change without revising 

previous SAEs

 Extra covariates for built-in or self-benchmarking

 Summary

Outline
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 Direct estimates 𝑡𝑦𝑎 (of totals 𝑇𝑦𝑎 ) are not reliable enough 

for lower level areas or domains but may be so for most if 

not all very high level areas. 

 It is the  sample size in the area that determines the need 

for SAE. 

 A way out is to increase the effective sample size indirectly 

by modeling to connect the small area parameters 𝜃𝑦𝑎 (i.e., 

by borrowing strength) where 

𝑇𝑦𝑎 = 𝑁𝑎 𝜇𝑦𝑎 +  𝐸𝑎 ≅ 𝑁𝑎𝜇𝑦𝑎= 𝜃𝑦𝑎, 1 ≤ 𝑎 ≤ 𝐾𝐴

What is SAE?
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 A Unit level Superpopulation Model:

-- LMM   𝑦𝑎𝑘 = 𝑥𝑎𝑘
′ 𝛽 + 𝜂𝑎 + 𝜀𝑎𝑘; 

𝜀𝑎𝑘~𝑖𝑖𝑑 𝑁 (0, 𝜎𝜀
2), 𝜂𝑎 ~𝑖𝑖𝑑 𝑁 (0, 𝜎𝜂

2)

 We have  𝑇𝑦𝑎 = 𝑁𝑎 𝜇𝑦𝑎 +  𝐸𝑎 where 

𝜇𝑦𝑎=𝐴𝑥𝑎
′ 𝛽 + 𝜂𝒂, 𝐴𝑥𝑎= 𝑁𝑎

−1  𝑘 𝑥𝑎𝑘,   𝐸𝑎=𝑁𝑎
−1  𝑘 𝜀𝑎𝑘

 If A-level is the lowest level of availability for some 𝑥𝑎𝑘, 

replace 𝑥𝑎𝑘 by 𝐴𝑥𝑎 and the unit level model is rendered 

into an aggregate or A-level model. Other x’s may only be 

available at a higher level B, then use 𝐴𝑥𝑏 to replace 𝑥𝑎𝑘.

How to model for connecting 𝜃𝑦𝑎?
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 The linear model has common fixed parameters 𝛽 in the 

systematic part and 𝜎𝜂
2 in the random part. 

 The model could be nonlinear mixed such as log linear:

𝜇𝑦𝑎 = 𝑒𝐴𝑥𝑎
′ 𝛽+𝜂𝑎

= 𝑒𝐴𝑥𝑎
′ 𝛽+  𝜎𝜂

2 2+𝑒𝐴𝑥𝑎
′ 𝛽𝜆𝑎,    where 

log( 𝜆𝑎 +𝑒  𝜎𝜂
2 2) ≡ 𝜂𝑎 ~𝑖𝑛𝑑 𝑁(0, 𝜎𝜂

2)

 The additive random component 𝜆𝑎 (= 𝑒𝜂𝑦𝑎 − 𝑒  𝜎𝜂
2 2) has 

mean 0 and variance 𝑒𝜎𝜂
2
(𝑒𝜎𝜂

2
− 1)—an LLMARC model.

How to model for connecting 𝜃𝑦𝑎?
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 Sample randomization from the finite population: 

𝜋: 𝑡𝑦𝑎 = 𝑇𝑦𝑎 + 𝑒𝑎, (𝑒𝑎)1≤𝑎≤𝐾𝐴
~ (0, 𝑉𝐴)

 Finite population randomization from the super-population:

𝜉: 𝑇𝑦𝑎 = 𝑁𝑎 𝜇𝑦𝑎 +  𝐸𝑎

≅ 𝑁𝑎𝜇𝑦𝑎= 𝑁𝑎(𝐴𝑥𝑎
′ 𝛽 + 𝜂𝑎);  𝜂𝑎 ~𝑖𝑛𝑑𝑁(0, 𝜎𝜂

2)

 Under joint 𝜋𝜉 −randomization, we have two estimates of 

𝑇𝑦𝑎; one is the direct estimator 𝑡𝑦𝑎 and the other is the 

synthetic estimator  𝑁𝑎𝜇𝑦𝑎. Combine the two to obtain a 

more efficient composite estimator assuming 𝑉𝐴 known.

(Fay and Herriot, 1979).

How do we get more efficient Est.?
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 Having constant variance of random effects at each level of 

aggregation but variable for different levels is not feasible 

because any higher level model for totals can be obtained 

from lower level models involving the same set of 

parameters. E.g., for LMM and letting B- and C- denote 

lower and higher levels,

 𝑏∈Ω𝑐
𝑁𝑏 𝜂𝑏 = 𝑁𝑐𝜂𝑐 implies Var (𝜂𝑐) = 𝜎𝜂

2  𝑏∈Ω𝑐
𝑁𝑏

2/ 𝑁𝑐
2.

 The exchangeability assumption for random effects under 

Bayesian models at higher levels becomes questionable.

 Treating 𝑉𝐴 as known goes against the premise of 

inadequate sample size for precise direct estimates. In 

practice, resort to generalized variance-covariance  

functions  for smoothing.

Some General Issues of Concern
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 For a given level of aggregation, areas or domains with no 

observations or zero contributions to the study variable are 

set aside during modeling and later only synthetic 

estimates provided as SAEs for them. This is not 

satisfactory because same areas when part of higher level 

areas play a role to obtain nonsynthetic SAEs. 

 Models for sample means and totals are not equivalent 

unless  𝑁𝑎 = 𝑁𝑎--unlikely. Modeling totals allows to have a 

single lowest level model from which any higher level 

model can be derived. Also avoids the problem of ratio bias 

when modeling means. 

Some General Issues of Concern
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 In frequentist, inference about unknown parameters of 

interest is based on distributions of statistics under 

repeated sampling, but in Bayesian, inference is based on 

the posterior distribution of parameters of interest under 

some model for the data and prior for unknown 

parameters; Little (2006).

 All modeling assumptions can be validated under 

frequentist  but not under Bayesian because of prior 

distribution assumptions for all parameters. 

Bayesian and Frequentist 

Approaches
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 The 𝜋𝜉 −model (LMM or GLMM) introduced earlier is 

frequentist because no priors specified for the parameters 

(𝛽, 𝜎𝜂
2)—frequentist model fixed parameters. The 

distribution of random effects 𝜂𝑎, although often referred to 

as a prior, is just part of the model specification as it can be 

validated from the data (Rao and Molina , 2015, pp. 270).

 For a Bayesian 𝜋𝜉 −model specification, we also need; 

e.g., 𝛽𝑖~𝑖𝑖𝑑 𝑁 (0, 106), 1 ≤ 𝑖 ≤ 𝑝; 𝜎𝜂 ~ 𝑈(0, 103)

 Due to random 𝜎𝜂
2, the random effects 𝜂𝑎 are no longer 

independent unconditionally but are exchangeable.

Bayesian and Frequentist 

Approaches
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 Frequentist: Estimates of 𝜎𝜂
2 may be inadmissible or 

unsatisfactory under usual methods ; e.g., negative (and 

hence truncated to 0) or may take very small values. 

 For GLMM, it may be difficult in general to obtain estimates 

of MSE of SAEs adjusted for estimated second order fixed 

parameters.

 Also customary use of normality-based interval estimates 

not satisfactory. Some advanced methods have been 

developed to overcome these problems under special 

cases.

Main Limitations of Frequentist 

Approaches to SAE
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 Bayesian: No provision of less shrinkage of higher level 

direct estimates to synthetic estimates when estimating 

higher level totals if the modeling is done at a lower level. 

 If different models used at different levels, and estimates 

benchmarked to the higher level SAE in a second step 

outside the Bayesian framework, it does not provide 

benchmark-adjusted posteriors.

 Model diagnostics not easily understandable by users at 

large. In particular, interpretation of any pattern in  cross-

validation predictive residuals is difficult due to absence of 

any assumed distribution under the model.  

Main Limitations of Bayesian 

Approaches to SAE
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 The limitations of the frequentist can be overcome by the 

Bayesian and vice-versa. So BFI is a natural way to go.

 In BFI, for the Bayesian model, start with the frequentist 

model and then introduce priors for ‘frequentist model fixed 

parameters’.

Bayesian-Frequentist Integration for SAE 
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 For hierarchical benchmarking, the frequentist feels free to 

ratio-adjust the SAEs from lower level to the corresponding 

SAEs at the higher level obtained from a higher level 

model for internal consistency and robustness to possible 

departures from the model. Relies on approximations for 

variance and interval estimation. 

 The Bayesian is bound by its prescriptive rules to obtain a 

legitimate posterior. A serious problem arises because 

benchmarks based on the same data. So can’t just ratio-

adjust each MCMC SAE replicate.  

BFI for SAE
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 Suppose the frequentist model fixed parameters (𝛽, 𝜎𝜂
2) 

are given and we obtain posteriors of (𝜂𝑏)1≤𝑏≤𝐾𝐵
from the 

higher level input of direct estimates (𝑡𝑦𝑐)1≤𝑐≤𝐾𝐶
as well as 

from the lower level input (𝑡𝑦𝑏)1≤𝑏≤𝐾𝐵
where B-level is 

nested within C-level. Even with a single direct estimate  

𝑡𝑦𝑑 at the highest level, can get posteriors of all 𝜂𝑏’s 

although their posterior means not very precise.

 We get two sets of SAEs—one at the C-level and the other 

at the B-level and want B-level SAEs to sum to the C-level 

SAEs over all b’s that are nested within a given level c.

 We can obtain a benchmark-adjusted empirical joint 

posterior if the MCMC replicates from the two levels are 

linked!!!

BFI-Posterior
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 For any parameter θ , let 𝑓(θ) be the prior and 𝑓(θ|data)
be the posterior. Consider two random variates 𝜃𝑝𝑟𝑖𝑜𝑟 and 

𝜃𝑝𝑜𝑠𝑡 with distributions 𝑓(θ) and 𝑓(θ|data) respectively. The 

joint distribution of 𝜃𝑝𝑟𝑖𝑜𝑟 and 𝜃𝑝𝑜𝑠𝑡 defines the linking of 

the two distributions. 

 The joint distribution can be obtained empirically using the 

Metropolis-Hastings (M-H) algorithm. For the replicate 𝑟

and a U(0,1) cut-off 𝑢𝑟, use the candidate 𝜃𝑝𝑟𝑖𝑜𝑟
(𝑟)

to obtain 

𝜃𝑝𝑜𝑠𝑡
(𝑟)

either as the current or the candidate value depending 

on the acceptance probability. Thus the pairs (𝜃𝑝𝑟𝑖𝑜𝑟
(𝑟)

, 𝜃𝑝𝑜𝑠𝑡
(𝑟)

) 

are linked.

Linking of Prior and Posterior of θ
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 For the SAE problem, given (𝛽, 𝜎𝜂
2), draw candidates 𝜂𝑐𝑎𝑛𝑑

(𝑟)

from the prior 𝑓(𝜂) and 𝑢𝑟from U(0,1). Now perform two 

separate M-H to obtain linked 𝜂𝐿
(𝑟)

and 𝜂𝐻
(𝑟)

. This gives an 

empirical joint distribution (𝜂𝐿
(𝑟)

, 𝜂𝐻
(𝑟)

) with R MCMC 

replicates with two datasets for the same 𝜂.

 Next obtain the MCMC replicate values of the SAE 

parameters from lower and higher levels and perform ratio-

adjustment for hierarchical benchmarking for each 

replicate. The resulting empirical posterior of SAEs at the 

lower level is the benchmark-adjusted BFI-posterior.  

Linking of Lower and Higher level 

Posteriors of 𝜂 for BFI
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 Use hierarchical Bayes (HB) at the lowest level (the 

building block or B-level) for maximum efficiency. 

 Obtain the posterior of all parameters (𝛽, 𝜎𝜂
2,(𝜂𝑏)1≤𝑏≤𝐾𝐵

) as 

the product of marginal and conditional posteriors based 

on different datasets for subsets of the parameters. That is, 

the BFI-posterior is given by 

𝑓(𝛽, 𝜎𝜂
2|𝒕𝑦

𝐵
) × 𝑓((𝜂𝑏)1≤𝑏≤𝐾𝐵

|𝒕𝑦
𝐶

, 𝛽, 𝜎𝜂
2)

 The above BFI-posterior is nonstandard but legitimate.

 The 𝜂 −parameters are estimated from the posterior 

conditional on the direct estimates as input at the desired 

level of aggregation in the interest of asymptotic design 

consistency (ADC).

How to estimate (𝛽, 𝜎𝜂
2)? 
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 At the B-level, many areas may have no sample 

observations or may have zero contributions. The 

corresponding V-C matrix 𝑉𝐵 cannot be estimated very well 

and the normality approximation no longer meaningful. 

 Group building blocks with similar prediction scores 

𝐴𝑥𝑏
′  𝛽(0) where  𝛽(0)is obtained by fitting the regression 

model using nonzero 𝑡𝑦𝑏 ’s at the B-level. For improving 

stability of the V-C matrix and normal approximation, 

groups can be formed such that their CVs (with synthetic 

estimate in the denominator) stay below a threshold. 

Grouping of Building Blocks for 

Small Area Modeling (BBSAM) 
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 The G(B)-level direct estimates are used to fit the original 

B-level model without changing any parameters. For HB 

formulation, only the level (i) specification is affected and is 

given by 

𝑡𝑦𝑔 =  
𝑏=1

𝑚𝑔
𝑁𝑏𝜇𝑦𝑏 + 𝑒𝑔,  (𝑒𝑔)1≤𝑔≤𝐾𝐺(𝐵)

~ N(0, 𝑉𝐺(𝐵))

 It follows that even building blocks with no observations or 

zero estimates take part in modeling and not kept aside. 

Corresponding random effects 𝜂𝑏’s can be estimated 

because the group contribution in which they belong is not 

zero. The resulting SAEs are no longer purely synthetic. 

Grouping for Building Block Small 

Area Modeling (BBSAM) 
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 For annually repeated surveys such as ACS, beside spatial 

modeling, temporal modeling can be used for further 

efficiency gains. 

 Can use SSM to model evolution of 𝛽 and 𝜂 −parameters 

over time with a Bayesian or a Frequentist approach.

 In estimating change 𝑇𝑦𝑎(𝜏) − 𝑇𝑦𝑎(𝜏−1), using datasets from 

the current and previous time points yields optimal 

estimates. However, it is preferable not to revise already 

published previous estimates even though it is optimal to 

do so. For monthly CPS, seasonal random effects also 

involved; see Pfeffermann and Tiller (2006). 

Modeling over Time for Estimating 

Change without Revising Prev. Est.
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 We can use the BFI-posterior construct to estimate change 

without revising the previous estimate and obtain the 

corresponding adjusted posterior by linking MCMC 

replicates from 𝜏 − 1 and 𝜏.

 Recall that higher and lower level aggregates in cross-

sectional modeling amounts to using coarser or less 

informative version of lower level input at higher levels for 

estimating the same set of random effects.

 Similarly, not using current time data to update previous 

time point estimates amounts to using less information for 

estimating random effects but more for current time.  

Modeling over Time for Estimating 

Change without Revising Prev. Est.
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 For LMM, use an extra covariate 𝑉𝐵1𝑏∈Ωℎ
to obtain exact 

built-in benchmarking of SAEs at B-level to the direct 

estimator at the highest or national level under the 

frequentist approach; Singh (2006) and Wang, Fuller and 

Qu (2008). For GLMM, can define such a covariate 

iteratively because of unknown 𝜎𝜂
2. In practice, could have 

several benchmarks.

 Built-in benchmarking is desirable for robustification to 

departures from the model; Pfeffermann (2013).

Extra Covariate for Built-in or Self-

Benchmarking
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 Under Bayesian, don’t get exact benchmarking but 

inclusion of new covariates is nevertheless beneficial.

 FOR BFI, it is preferable to have built-in benchmarking of 

synthetic estimates rather than SAEs because lower level 

SAEs are benchmarked hierarchically to higher level SAEs 

and we want the highest level SAE to be almost identical to 

the direct estimator. 

 For benchmarking of synthetic estimates, a different new 

covariate 𝑊𝐵1𝑏∈Ωℎ
is introduced where 𝑊𝐵=𝑉𝐵+𝑈𝐵, 𝑈𝐵 =

𝑑𝑖𝑎𝑔{𝑁𝑏
2𝜎𝜂

2}. Similarly for GLMM; Singh and Verret (2006).

Extra Covariate for Built-in or Self-

Benchmarking
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 Pros and Cons for both frequentist and Bayesian 

approaches.

 The construct of BFI-posterior is useful to incorporate 

frequentist features in the Bayesian framework. Helps to 

alleviate the perception of the powerful Bayesian solution 

as a black box among practitioners often due to subjective 

priors and no closed form analytic estimates involving 

intensive Monte Carlo computations.

 Traditional Bayesian formulation cannot handle random 

parameter constraints based on the same data needed for 

hierarchical benchmarking. 

Summary
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 BFI-posterior was introduced to allow for different 

conditioning datasets for the same set of random effect 

parameters ; and for  different subsets of parameters—

frequentist model fixed and random effect parameters.

 MCMC based on M-H was used to link posteriors of 

random effects from higher and lower level input data or 

from less informative (up to the previous time point) and 

more informative (up to the current time point) data.

Summary
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 BBSAM was used to avoid incompatibility of models of 

totals from different levels and for plausibility of the 

exchangeability assumption.

 Grouping of BBs needed to make the sampling error V-C 

matrix more stable, normality assumption feasible, and to 

obtain nonsynthetic SAEs for domains with no 

observations or zero direct estimates. 

 Extra covariates for built-in or self benchmarking in 

conjunction with hierarchical benchmarking introduced for 

robustification to model departures.

Summary
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