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1 Introduction

Cyclical patterns of expansion-contraction occur in a broad range
of time series

Time-varying intensity and with changing duration around some
central period.

Example: cycles in economic data, typically recur with periodicity
ranging from around 2 to 10 years

Filters: 1) Hodrick-Prescott (1997) filter as low-pass filter, HP
trend substracted from series, detrending filter, but this leaves noise
in estimated "cycle"

2) Solution: Band-pass filter, remove both low and high
frequencies, smoother estimates of the cycle, Baxter and King
(1999) and Harvey and Trimbur (2003).

Time series models for cyclical behavior

Dynamics as decomposition into unobserved components



2 Modelling stochastic cycles

Andrews (1994) - looked at forecast performance of STSMs for
economic data

Mendelssohn (2005) - models for El Nino related phenomena

Fadiga and Wong (2009), Clark and Coggin (2009) - regional hous-
ing prices

Mills (2012) - EMU countries overall output gap

Labys et al (2000) - cycles in commodity prices.

Tawadros (2008) - cyclial dynamics of oil demand

De Bonis and Silvestrini (2014) - financial cycle in Italy.

Successful studies with first order cycles, but these....

1. Leave noise in the cycle, worse for turning point analysis

2. Often do worse than higher orders in fitting the data

3. Do not give link with band-pass filter methods

Higher order cycles - solves the three points, less well studied



3 Estimating cycles/filtering

Basic goal of filtering: extract the cyclical component in series that
has other components

yt = µt + ψt + εt,

Implicit or explicit, Either decomposition is spelled out
directly or it is implied by filtering

Band pass filtering is to remove µt and εt

µt - Trend: nonstationarity, long-run, low frequencies

ψt - Cycle: stochastic, periodic, mid-range frequencies

εt - Noise, higher frequencies



4 "Ideal" Filter

Emulate a certain gain function for the filter, sharp or block-like shape, pass
through frequencies within a band without altering amplitudes, completely an-
nihilate frequencies outside the band

Simple concept

1. Does not directly use any information about the series’process, makes very
strong assumptions implicitly about process

2. One size fits all

This can create critical problems

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1
G



5 Baxter and King (1999): BK Filter

Time invariant, fixed filter, fixed set of weights, automatic computation

Immediate Disadvantages (as approximation to ideal filter): 1. Truncation of
estimates at end of sample - the most important ones for policy and current
analysis

2. Unstable gain - large ripple over pass band and more oscillations at higher
frequencies

BK gain shown in figure below as dotted-dashed line, starting from origin, gain
moves to 1.05 then to 0.95, then finally to 1.1 before declining toward zero and
showing more ripples
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6 Alternative To BK filter is modelled fil-ter

Start with parametric class of gains, generalize the Butterworth Band Pass filter

GB
bp
m,n(λ;λc, ρ, qζ, qκ)

= qκ[c(λ)]
n

qζ/[(1+φ
2−2φ cosλ)(2−2 cosλ)m−1]+qκ[c(λ)]n+1

,

c(λ) = 1+ρ2 cos2 λc−2ρ cosλc cosλ
1+ρ4+4ρ2 cos2 λc−4(ρ+ρ3) cosλc cosλ+2ρ2 cos 2λ

positive integersm and n are indices of filter

qζ > 0 and qκ > 0 are referred to as "signal-noise" ratios

φ and ρ mainly determine the filters’width and curvature

λc is a major frequency that determines the location of band-pass filter

Offer a lot of flexibility in gain shape

To get modelled "Ideal" Filter - Set parameters to generate sharp band-pass



7 Set of Modelled Representations of Ideal
Filter

Need moderate to high band pass index, so use n = 4, 6, 8.

Need high damping coeffi cient and highly persistent trend slope, so use ρ =
0.8, φ = 0.97

For each n, use different parameter settings, while constraining gain to equal
1/2 at edges

Figure below shows gain functions for different approximations with n = 6

Solid curve {qζ, qκ, λc} = {0.0124, 0.0322, 0.4910} Dotted curve

{qζ, qκ, λc} = {2.524, 0.279, 0.398}.

Major finding: Sharpness depends mostly on index n,
get tight range (non-trivial but modest) by making large
changes to other parameters



8 Set of Modelled Representations of Ideal
Filter

n = 4, 6, and 8

For each n, pick one of 12 candidate approximations on
basis of how well underlying model/parameter values fit
across range of time series of economic activity.

Three modelled representations of the ideal filter for
various orders.

Main finding: Flexibility in right side of band pass — in
noise elimination greater than flexibility in left side —
trend or low frequency removal



9 Baxter and King (1999): BK Filter

Figure below shows n = 6 modelled ideal filter as solid line
Modelled version of ideal filter fixes the two immediate problems with BK

1. Near end point estimates given by finite sample treatment of underlying model

2. Gain increases smoothly and remains very close to one over pass band with
very little variability, then decreases monotonically toward zero at higher fre-
quencies

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

G

Gain function for BK filter (truncating twelve
observations) and modelled representation of ideal

filter.



10 Ideal Filter Usage

Ideal Filter Usage:

Offers automatic application

Seems "scientific" but actually involves strong
assumptions

What are the crucial shortfalls of the BK filter (or other
ideal filter emulator) ?

Artificial cycles can be created from pure noise or
trend

More generally, cycles can be inflated or dampened
by the filtering procedure —problematic for policy deci-
sions

Basic problem is that gain emulation makes no use
of information about process



11 BK filter creates "cycle" from noise

Figure below shows simulated series of constant level plus white noise

Adaptive filter (from Trend-Cycle-Irregular model) vs. BK filter

Estimated trend shown in blue - estimated as approximately constant
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Figure below shows "cycle" from BK output and estimated cycle
BK output has clear serial correlation — looks like a stochastic cycle with peaks
and troughs and rapid oscillations
Estimated cycle is close to zero and correctly so
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12 BK filter creates cycle from RW trend

Estimated Trend Series

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200 250 300 350

Estimated Trend Series

Simulated random walk and estimated trend using model-based approach.
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a simulated random walk.



13 Information about periods applies di-
rectly to the cyclical component

Periodicity does NOT apply directly to the filter used to extract it

Baxter and King (1999) explicitly state that Burns and Mitchell (1946) specified
business cycles as cyclical components of no less than six quarters in duration
and that they typically last fewer than eight years

Also, note the use of "typically last", suggesting possibility of cyclical episodes
longer than 8 years, as happened in post-WWII era – > this argues against a
sudden and sharp cutoff for periods above 8 years

Cyclical Spectra
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We use a flexible concept of cycle that has peaked spec-
trum —a lot of diversity permitted



14 Stochastic Cycle Model

The model is constructed by starting with a simple fixed
cycle, writing as difference equation, adding damping,
including stochastic shocks, then adding resonance

Start with fixed cycle:

ψt = A cos(λct+ ω)

with period 2π/λc, amplitude A, and phase ω being
fixed parameters

Next, re-express the cycle

ψt = (ψ0 cosλct+ ψ∗0 sinλct)

which is equivalent with A =
√
(ψ20 + ψ∗20 ) and ω =

tan−1(ψ∗0/ψ0).



15 Stochastic Cycle Model

Now, convert to linear difference form by augmenting
the system with a companion process ψ∗t that also evolves
over time, and then writing a recursion:

 ψt
ψ∗t

 =
 cosλc sinλc
− sinλc cosλc

  ψt−1
ψ∗t−1



where the constants ψ0 and ψ
∗
0 become the starting

values

Extend with ρ, autoregressive factor where 0 < ρ ≤ 1 :

 ψt
ψ∗t

 = ρ

 cosλc sinλc
− sinλc cosλc

  ψt−1
ψ∗t−1





16 Stochastic Cycle Model

Add shocks:

 ψt
ψ∗t

 = ρ

 cosλc sinλc
− sinλc cosλc

  ψt−1
ψ∗t−1

+
 κt
κ∗t



where [κt, κ∗t ] ∼ WN(0, σ2κ) and κs is uncorrelated
with κ∗t for all s, t

Then add resonance and define a second order cycle
ψ2.t by

 ψ2,t
ψ∗2,t

 = ρ

 cosλc sinλc
− sinλc cosλc

  ψ2,t−1
ψ∗2,t−1

+
 ψ1,t
ψ∗1,t


 ψ1,t
ψ∗1,t

 = ρ

 cosλc sinλc
− sinλc cosλc

  ψ1,t−1
ψ∗1,t−1

+
 κt
κ∗t





17 Stochastic Cycle Model

Now add higher orders of resonance and define a general
class.

For n > 0, an nth order stochastic cycle ψn,t is given
by the following:

 ψi,t
ψ∗i,t

 = ρ

 cosλc sinλc
− sinλc cosλc

  ψi,t−1
ψ∗i,t−1

+
 ψi−1,t−1
ψ∗i−1,t−1



for i = 2, ..., n

 ψ1,t
ψ∗1,t

 = ρ

 cosλc sinλc
− sinλc cosλc

  ψ1,t−1
ψ∗1,t−1

+
 κt
κ∗t



Higher n gives sharper spectrum



18 Stocastic Trend, Signal Extraction

Consider a damped smooth trend:

µt = µt−1 + βt−1, (1)

βt = (1− φ)β + φβt−1 + ζt, ζt ∼WN(0, σ2ζ)

where βt is the slope, coeffi cient φ satisfies 0 < φ ≤ 1
and gives trend damping.

band pass: best (MMSE) estimator of cyclical compo-
nent

ψt = F bp(L;M, θ)yt

Frequency domain: F bpm,n(λ) =
gψn(λ)

gµm(λ)+gψn
(λ)+gε(λ)

When you separate cycle from trend and noise, it is
intuitive that best filter for the task depends on how
cycle relates to trend and noise



19 Signal Extraction - adaptive band-pass

Component and Data Spectra
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Illustration of trend (low-pass) and cycle (band-pass) filters formed from model.

Curved band-pass, from overlapping frequency mix of components

Shape varies across series (different trend-cycle relationships)



20 Application

Data: Quarterly real GDP and GDP components

12 series in total on major sectors of economic activity

{ "Gross Domestic Product", "Investment", "Residen-
tial Investment", "Non-Residential Investment", "Inven-
tory Change", "Consumption", "Consumption of Durables",
"Consumption of Non-Durables", "Consumption of Ser-
vices", "Government Expenditures", "Exports", "Im-
ports"}

Source: Published by Bureau of Economic Analysis in
2018Q1

Sample: 1947:1 to 2017:4

Range of properties in data, various trend-cycle charac-
teristics

Such a dataset has advantage of being able to try method
on different trend-cycle scenarios



Example: Investment, trend and confidence bands shown in figure below

slight variation in growth rate up to GR, then trend flattens out during GR, then
growth rate recovers some
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Estimated cycle in Investment for n = 1 and 2 with Balanced form.

Large difference in smoothness between n = 1 and 2, second order better for
turning point analysis and for study of major cyclical movements. n = 2 case
also fits much better.



Second order case also gives link with band pass, whereas
n = 1 case does not.
Figure below shows noise removed on left and gain for extracting cycle on right.
First row gives n = 1, and second row gives n = 2 results.

n = 1 gives high pass filter —no removal of high frequencies

n = 2 shows the right tail characteristic of band pass, removal of high frequencies
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Gain, Band Pass  6 Gain, Band Pass 2
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Estimated Band Pass filter for extracting cycle in Investment for n = 2 and 6
with Balanced form

Even stronger link to band pass for orders above 2, more noise removal, smoother
cycles

Better fit (for Investment, a highly cyclical series)



Estimated cycle in Investment (in logs) for the modelled ideal filter with n = 6,
compared to the BK filter output.

Results are generally close, some differences in second half, timing of cycles a
bit different
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Estimated cycle in Investment (in logs) for the adaptively modelled case with n
= 6, compared to the BK filter output.

Substantial differences in amplitude, in path of cycle, note end where cycle
reaching a trough and beginning to turn up



Gain, Band Pass
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Estimated Band Pass filter for extracting the cycle in
Investment for n = 6 with Balanced form, shown with

ideal filter boundaries (dotted lines).

Substantial differences in estimated gain and ideal gain

Estimated gain admits more frequency components around left edge of band
pass — this gives a stronger, more persistent cycle

Estimated gain also admits more components around right edge

In general, estimated gain is more inclusive



21 Empirical Results

Diagnostics extremely negative for ideal filter’s underly-
ing models

Substantial serial correlation in residuals

Ideal filter Models cannot be seriously entertained, es-
pecially for n = 8

Adaptively estimated models at higher orders perform
well

Estimated gain and cycles differ significantly from ideal
filter, by an amount that varies across series

For highly cyclical series, very high orders perform well,
suggesting resonance in these cycles

In nearly cases, the first order cycle is outperformed by
higher orders



22 Conclusions

Develop Range of Modelled Approximations to Ideal Fil-
ter

These Depend Critically on Higher Order Cycles

In case where ideal is appropriate, modelled representa-
tion has advantages over BK

Ideal Filter models do very poorly in terms of fit

This connection reveals inadequacy of ideal filter, how
an adaptive gain should instead be used

Higher Order Cycles give smoother estimated cycles,
generally and link with band-pass gets stronger as order
incresaes

Also provide better fits for a range of time series of US
economic activity

For highly cyclical series, the best index can be as high
as 6 to 8



23 Future work

Higher order models applied to other kinds of time se-
ries - e.g. price series for housing, commodities, other
sectors

Applied to exchage rates, financial series, energy series,
output in countries other than U.S., Climate time series

Used in connection with other kinds of models, e.g. oil
price determinants such as OPEC behavior

Forecasts of cycles

Used for turning point detection, real-time analysis

Multivariate - link housing cycle and business cycle, re-
late commodity price cycles to business cycles, different
time series associated with El Nino/Southern Oscillation
indices


