
X-13 Stuff You Should
Know

Brian C. Monsell and Osbert Pang

Brian.C.Monsell@census.gov

SAPW 2018
April 26, 2018

Any views expressed are those of the
author(s) and not necessarily those of the

U.S. Census Bureau.

mailto:Brian.C.Monsell@census.gov

Outline

• Seasonal adjustment production in R
• Continued from SAPW 2016

• qcheck argument in spectrum spec
• A feature of the X-13ARIMA-SEATS HTML output

• How to read seasonal factors directly from HTML output

2

The problem (from last time)

• The Center for Economic Studies was planning on publishing
seasonally adjusted estimates for quarterly Business
Formation Series (BFS)

• 12 types of series
• In each type, there is an estimate for each state, the District of

Columbia, and the total for the US

• Need seasonally adjusted series, graphs
• Need a quick turnaround time

All analysis done with R
• Data stored in list objects
• For “annual review”, automatic model and filter selection

done
• A list of X-13 objects is produced using the seasonal package

• Diagnostic summary is generated
• Modeling and adjustment options can be refined based on the diagnostics

• A “static” version of the seasonal objects are generated to
produce final seasonal adjustments.

• Graphs of the seasonal adjustments are generated
• Final adjustments saved to Excel files

R seasonal package

• Allows users to run X-13ARIMA-SEATS with R
• Eliminates many of the external files generated by X-

13ARIMA-SEATS
• Data and diagnostic information can be stored in efficient

data structures within R

Example

load seasonal package
library("seasonal”)
Sys.setenv(X13_PATH = "h:/x13ashtml")
checkX13()

run Airline Series,
do X-11 seasonal adjustment
m <- seas(AirPassengers, x11="")
examine output file for run
out(m)

R functions for seasonal adjustment
production

• Osbert and I have developed many R functions for
this project that:

• access and summarize the diagnostic information using
the udg() function.

• save seasonal arguments for an individual series,
• save a seas object to an external spec file,
• determines for which series seas() has failed.

• Functions available upon request.

Two problems

• Saving final results to Excel files
• Saving final spec files for another group’s use

Saving final adjustments to Excel files

• CES wanted separate Excel files for state, US series for each
group for distribution

• Need separate worksheets for the seasonally adjusted and original
series

• We needed a package that would write Excel spreadsheets
that could create individual workbooks.

• Used the xlsx package
• Writes R data structures to individual workbooks
• Requires rJava, xlsxjars

Saving final adjustments to Excel files in R

• Function that generates the Excel files for each of the groups
• Create separate data frames for the original series and the

seasonally adjusted series
• Have separate data frames for the state series, US national numbers
• First column: Quarter, Year of each observations
• State data frames: column for each state series

• Generate Excel files, using xlsx package
• Use write.xlsx function to write each worksheet

write.xlsx(a1st, stateFile, sheetName = 'BA_SA', row.names = F)
write.xlsx(a2st, stateFile, sheetName = 'BA_NSA', append = T,

row.names = F)

generic output function that splits off US data and stores it in a separate Excel file

outputSplit <- function(X.data, Y.models, stem, thisDir = 'March2018', thisExt='q4y17') {
data.list to X.data
list of (final) seas objects to Y.models
group name as string to stem

require(xlsx)
require(seasonal)
require(zoo)

create matrix of seasonally adjusted series (a1), original data (a2)
a1 <- do.call(cbind, lapply(Y.models, final))
a2 <- do.call(cbind, X.data)

create data frames from matrices, adding a column for the time of each obs.
a1 <- data.frame(Time = yearqtr(time(a1)), a1)
a2 <- data.frame(Time = yearqtr(time(a2)), a2)

Generate data frames containing only the states
a1st <- a1[c(-53)]
a2st <- a2[c(-53)]

Generate data frames containing only the US total
ivec <- c("Time","us")
a1us <- a1[ivec]
a2us <- a2[ivec]

Generate file names
stateFile <- sprintf('N:/timeseriescsrm/%s/out.%s/%s_ST.xlsx', thisDir, thisExt, stem)
USFile <- sprintf('N:/timeseriescsrm/%s/out.%s/%s_US.xlsx', thisDir, thisExt, stem)

Generate excel files for SA and original data, each in their own worksheet
write.xlsx(a1st, stateFile, sheetName = sprintf('%s_SA', stem), row.names = F)
write.xlsx(a2st, stateFile, thisDir, thisExt, stem), sheetName = sprintf('%s_NSA', stem),

append = T, row.names = F)
write.xlsx(a1us, USFile, sheetName = sprintf('%s_SA', stem), row.names = F)
write.xlsx(a2us, USFile, sheetName = sprintf('%s_NSA', stem), append = T, row.names = F)

}

Saving final spec files

• We received a request for spec files equivalent to the
adjustments done in R

• Used the sink function to generate the files
• However, entries for the file and title arguments of the
series spec reflect the temporary directory used by seasonal

• Can read the generated spec into a character array.
• Use the grep function to find the lines with the file and title

arguments, replace them with more useful values.

saveMetaFile is a function that generates an X-13 meta file and returns a list
of the names of the series stored in the metafile
DUR8Q.names <-

saveMetaFile("DUR8Q", "N:/timeseriesCSRM/March2018/test/DUR8Q", "_", "lauto")

setwd("N:/timeseriesCSRM/March2018/test/DUR8Q")

for (i in DUR8Q.names) {
x <- DUR8Q.q4y17.data.list[[i]]
sink(sprintf("DUR8Q_%s.spc", i))
print(spc(eval(static(DUR8Q.lauto[[i]], x11.filter = T, test = F))))
sink()

}
for (fn in list.files(getwd(), 'DUR8Q.+spc')) {

aa <- readLines(fn)
stem <- substr(fn, 1, nchar(fn) - 4)
aa[grep('title', aa)] <- sprintf(" title = \"Final X-13 run for %s\"", stem)
aa[grep('file', aa)] <- sprintf(" file = \"%s.dat\"", stem)
writeLines(aa, fn)

}

qcheck argument

• There are situations where
• the monthly version of a series is not seasonal,
• but the quarterly series is.

• To test for this condition, the qcheck argument was added
to the spectrum spec

• Generates a quarterly version of the monthly series
• Generates the QS statistic for the quarterly original series, seasonally

adjusted series

QS calculation

• Find the lag s and 2s (12&24 or 4&8) autocorrelations, rs and
r2s of the differenced series

• If rs is negative, then QS is 0. Else

𝑄𝑄𝑄𝑄 = 𝑛𝑛(𝑛𝑛 + 2)
𝑟𝑟𝑠𝑠2

𝑛𝑛 − 𝑠𝑠
+

𝑅𝑅2𝑠𝑠2

𝑛𝑛 − 2𝑠𝑠
where R2s is r2s if r2s >0, 0 o.w.
and n = series length – differencing order

• QS ~ Χ2 with 2 degrees of freedom

Generating monthly, quarterly QS with R

• If you have data in a list object, use lapply to generate
seas objects for all the series in the list

• Need to add the argument spectrum.qcheck = "yes" to the
call to seas.

• Use the udg function to gather QS statistics for monthly and
quarterly series

• For monthly QS : udg(x, "qsori")
• For quarterly QS: udg(x, "qsori.qseas")
• Need to use lappy to apply udg function to every element of the list

• Can use xlsx package to save to Excel files

X-13 runs on FTD data list, using qcheck
lauto <- lapply(ftd.data.list, function(x) try(seas(x, x11 = "", spectrum.qcheck = "yes",

slidingspans=NULL, history=NULL)))

create matrix of QS diagnostics for monthly and quarterly original series
ftd.qsori <-
cbind(matrix(unlist(lapply(lauto, function(x) try(udg(x,"qsori")))), ncol=2,

byrow = TRUE),
matrix(unlist(lapply(lauto, function(x) try(udg(x,"qsori.qseas")))), ncol=2,

byrow = TRUE))
ftd.qssori <-
cbind(matrix(unlist(lapply(lauto, function(x) try(udg(x,"qssori")))), ncol=2,

byrow = TRUE),
matrix(unlist(lapply(lauto, function(x) try(udg(x,"qssori.qseas")))), ncol=2,

byrow = TRUE))

Generating results of qcheck

create dimension names for matrixes
dimnames(ftd.qsori)[[1]]<-names(ftd.data.list)
dimnames(ftd.qsori)[[2]]<-c("qsori","qsori.pv","qsori.qseas","qsori.qseas.pv")

dimnames(ftd.qssori)[[1]]<-names(ftd.data.list)
dimnames(ftd.qssori)[[2]]<-c("qssori","qssori.pv","qssori.qseas","qssori.qseas.pv")

save QS matrixes to Excel files
require(xlsx)
write.xlsx(ftd.qsori,"ftd.qs.xlsx",sheetName = "qsori", row.names = TRUE)
write.xlsx(ftd.qssori,"ftd.qs.xlsx",sheetName = "qssori", row.names = TRUE, append=TRUE)

Saving results of qcheck

X-13 tables in HTML output

• Each table is encapsulated within a set of <div> tags with
that has a unique name

• This creates an entry in the Document Object Model (DOM)
for the HTML file

• Allows access to the contents of the named <div> tag
• The R xml2 package can be useful for this

• Problem:
• Read seasonal factors directly from the HTML output

<div id="otl">
<table class="x11"

summary ="A 8 RegARIMA combined outlier component" >
<caption>A 8 RegARIMA combined outlier component</caption>
<tr>
<td class="head"> </td>
<th scope="col"><abbr title="January"> Jan </abbr></th>
<th scope="col"><abbr title="February"> Feb </abbr></th>
<th scope="col"><abbr title="March"> Mar </abbr></th>
<th scope="col"><abbr title="April"> Apr </abbr></th>
<th scope="col"> May </th>
<th scope="col"><abbr title="June"> Jun </abbr></th>
<th scope="col"><abbr title="July"> Jul </abbr></th>
<th scope="col"><abbr title="August"> Aug </abbr></th>
<th scope="col"><abbr title="September"> Sep </abbr></th>
<th scope="col"><abbr title="October"> Oct </abbr></th>
<th scope="col"><abbr title="November"> Nov </abbr></th>
<th scope="col"><abbr title="December"> Dec </abbr></th>
<th scope="col"><abbr title="Average "> AVGE</abbr></th>
</tr>

One Solution

• Use the R package xml2 to create an R time series object
with the seasonal factors

• Use xml.read to read the HTML file into an R object
• Use xml.children to locate the node of the div tag that

contains the seasonal factors
• Use xml.text to extract the text from that node

> library("xml2", lib.loc="~/R/win-library/3.3")
> ta <- read_xml("c:/x13ashtml/testairline.html")

> xml_children(ta)
{xml_nodeset (2)}
[1] <head>\n <title>testairline.html</title>\n <meta name="keywords” ...
[2] <body>\n <div id="content">\n <p>Reading input spec file from ...

> xml_children(xml_children(ta)[2])
{xml_nodeset (2)}
[1] <div id="content">\n <p>Reading input spec file from ...
[2] <div id="rightnavigation">\n \n ...

> xml_children(xml_children(xml_children(ta)[2])[1])
{xml_nodeset (25)}
...
[7] <h3>D 10 Final seasonal factors</h3>
[8] <p>From 1952.Jan to 1960.Dec
\n Observations 108</p>
[9] <p>Seasonal filter : 3 x 3 moving average</p>

[10] <div id="d10">\n <table class="x11" summary="D 10 Final seasonal factors"> ...
[11] <p class="center">\nTable Total- 10804. ...
[12] <p> </p>
[13] <h3>D 10.A Final seasonal component forecasts</h3>
...

> xml_children(xml_children(xml_children(ta)[2])[1])[10]
{xml_nodeset (1)}
[1] <div id="d10">\n <table class="x11" summary="D 10 Final seasonal factors">\n ...

> xml_text(xml_children(xml_children(xml_children(ta)[2])[1])[10])
[1] "D 10 Final seasonal factors Jan Feb Mar
Apr May Jun Jul Aug Sep
Oct Nov Dec AVGE1952 89.52 88.59 102.96 97.61
98.13 112.63 123.82 119.30 104.82 92.62 79.84 90.26 100.011953 89.53 88.53
102.66 97.55 98.11 112.47 124.18 119.49 105.31 92.31 79.89 90.21 100.021954
89.83 88.20 101.75 97.47 98.00 112.40 124.72 120.29 105.79 91.90 80.08 89.93
100.031955 90.46 87.55 100.37 97.24 97.87 112.51 125.29 121.53 106.26 91.84
80.11 89.58 100.051956 91.04 86.67 98.77 96.92 97.64 112.81 126.06 123.21
106.18 92.26 80.16 88.88 100.051957 91.19 85.91 97.65 96.51 97.52 112.87
127.03 124.64 106.24 92.77 80.04 88.37 100.061958 90.87 85.26 96.74 96.38
97.46 112.86 128.04 125.85 106.08 93.16 79.99 87.86 100.051959
90.41 84.77 96.17 96.43... <truncated>

One Solution

• Extract the time series from the text string
• Use strsplit to create an array of text split on “ “
• Filter the empty string elements out of the array
• Find the range of the seasonal factors
• Pick just the factors into another array, avoiding the entries for the

year and average of the seasonals
• Convert that array into real numbers
• Convert this object to a time series object

ta <- read_xml("c:/x13ashtml/testairline.html")
xx <- xml_children(xml_children(xml_children(ta)))
sf.table <- xml_text(xml_children(xx[10]))

sfList <- unlist(strsplit(sf.table,split=" "))
thisFilter <- sfList %in% ""
sfListFiltered <- sfList[!thisFilter]

iVec <- which(sfListFiltered %in% grep('AVGE',sfListFiltered, value=TRUE))
tempVec <- sfListFiltered[seq(iVec[1], iVec[2]-2)]

startSf <- c(as.integer(substr(tempVec[1], 5, 8)),1)

thisSf <- ts(as.double(as.vector(matrix(tempVec[1:length(tempVec)],
byrow=TRUE)[,2:13])), start=startSf, frequency = 12)

Questions?

Brian C. Monsell
Email : brian.c.monsell@census.gov

Osbert C. Pang
Email : osbert.c.pang@census.gov

mailto:brian.c.monsell@census.gov
mailto:osbert.c.pang@census.gov

	X-13 Stuff You Should Know
	Outline
	The problem (from last time)
	All analysis done with R
	R seasonal package
	Example
	R functions for seasonal adjustment production
	Two problems
	Saving final adjustments to Excel files
	Saving final adjustments to Excel files in R
	Slide Number 11
	Slide Number 12
	Saving final spec files
	Slide Number 14
	qcheck argument
	QS calculation
	Generating monthly, quarterly QS with R
	Generating results of qcheck
	Saving results of qcheck
	X-13 tables in HTML output
	Slide Number 21
	One Solution
	Slide Number 23
	Slide Number 24
	Slide Number 25
	One Solution
	Slide Number 27
	Questions?

