

Can Estimated-Control Calibration Reduce Bias in Estimates from Nonprobability Samples?

Jill A. Dever Bonnie E. Shook-Sa Richard Valliant, JPSM

> WSS Mini-Conference: Non-probability Samples Washington, DC Sept 9, 2015

> > www.rti.org

RTI International is a trade name of Research Triangle Institute.

Motivation

Fit for Purpose (6 Criteria):

Relevance, Timeliness, Accessibility, Interpretability, Accuracy (Precision), and Coherence [1]

Climate

- Declining response rates
- Measurement errors
- Limited funds
- The need for speed

Motivation

Weights needed for public-/research-use data [2]

- Propensity score adjustment [3]
- Calibration adjustment [4]
- Composite estimation (multiple data sets)
- Meta-analysis
- Model-based analyses (no weights)
- Bayesian modeling

Two Flavors of Survey Sampling Designs

Probability sampling:

- Presence of a sampling frame linked to population
- Every unit has a known probability of being selected
- Design-based theory focuses on <u>random selection mechanism</u>
- Examples: address-based sampling, dual-frame RDD

Non-probability sampling:

- No population sampling frame available
- Underlying population model is important
- Some opinions on reported estimates of error
- Examples: focus groups, opt-in web panels, quota sampling

Propensity Score Adjustment

Logistic model with a reference survey to estimate probability of selection => weights

Adjust for selection bias:

- Covered population
- Catchment area
- Nonresponse (nonparticipation)

Input weights:

- NP weights = 1
- Reference survey weights [4]

Propensity Score Adjustment

Assumptions:

- Surveys are disjoint
- Nonparticipants are missing at random
- Large reference survey from the target population
- Overlap in the questionnaires

Research to date:

- Only part of the bias was removed [5]
- Mixed results [3,6]
- Adjusted reference survey weights needed [4]

Calibration Adjustment

Traditional weight calibration [7]

$$\sum_{s_A} w_k \mathbf{x}_k = \mathbf{t}_{Ux}, \text{ where } \mathbf{t}_{Ux} = \sum_U \mathbf{x}_k$$

$$\hat{t}_{yGR} = \hat{t}_{Ay} + \left(\mathbf{t}_{Ux} - \hat{\mathbf{t}}_{Ax}\right)' \hat{\mathbf{B}}_{A}$$

Adjust for: [8]

- Coverage
- Nonresponse
- Weight variability

Input weights adjusted for sampling, nonresponse (possibly)

Calibration with Estimated Controls

Estimated Control (EC) Calibration [7]

$$\sum_{s_A} w_k \mathbf{x}_k = \hat{\mathbf{t}}_{Bx}, \text{ where } \hat{\mathbf{t}}_{Bx} = \sum_{s_B} w_l \mathbf{x}_l$$
$$\hat{t}_{yEC} = \hat{t}_{Ay} + (\hat{\mathbf{t}}_{Bx} - \hat{\mathbf{t}}_{Ax})' \hat{\mathbf{B}}_A$$

Adjust for:

- Coverage
- Nonresponse

Input weights adjusted for sampling, nonresponse (possibly)

Simulation Study

Research questions:

Can estimated-control calibration reduce bias in estimates from nonprobability samples?

Is there a difference between EC PSA, PSA.avg and calibration?

Simulation parameters [4]

- 2003 Michigan Behavioral Risk Factor Surveillance Survey (enhanced), N = 50,000
- Volunteer sample selected via Poisson sampling with defined probabilities of participation, $n_A = (250, 500, 1000)$
- Reference sample selected via simple random sampling, $n_B = (1000, 500, 250)$
- R = 10,000

Simulation Study

Covariates	Propensity to Volunteer	PSA's	EC Calibration
Age (6)	\checkmark	\checkmark	\checkmark
Race (3)	\checkmark	\checkmark	\checkmark
Gender (2)	\checkmark	\checkmark	\checkmark
Wireless phone (2)	\checkmark	\checkmark	\checkmark
Education (4)	\checkmark	\checkmark	\checkmark
Income (5)	\checkmark	\checkmark	\checkmark
Diabetes (2)		\checkmark	\checkmark

Simulation Study — Result Highlights

Compare relative differences in relative bias with and without estimated control (Diabetes):

$$relbias\left(\hat{\theta}\right) = 100\left(\overline{\hat{\theta}} - \theta\right) / \theta$$

Propensity to Volunteer covariates:

- EC PSA = bias decrease for some (< 5%),
 linked to correlation and size of reference
- EC PSA.avg = higher returns on bias reduction (<5%), more volatile results than EC PSA

Simulation Study — Result Highlights

Health Variables (9 categorical, 2 continuous):

- EC PSA = bias decrease for a few and not for others,
 better when reference survey is larger than NP
- EC PSA.avg = higher returns on bias reduction, more volatile results than EC PSA
- EC Calibration = bigger bang for the buck, more volatile results than EC PSA

Simulation Study — Result Highlights

	Dolotivo	Body Mass Index (Pct Relative Difference)		
	Sample Size	PSA	PSA.Avg	Calibration
	0.25	0.0	0.0	25.0
	1	1.3	0.0	22.7
* Ref	ference divided by non-	-probability 🔏 नि	ole size 2.0	19.4

Questions for Future Research

- How "best" to use EC Calibration with Propensity Scores?
- What is the impact on measures of error in using estimated controls?
- How sensitive are the theoretical assumptions underlying the methodology (e.g., surveys must be disjoint)?
- What flavor of estimated control should one choose?

References

- [1] Dever, J. A. & Valliant R. (2014). Estimation with non-probability surveys and the question of external validity. Paper presented at the Statistics Canada's 2014 International Methodology Symposium and published in the forthcoming conference proceedings.
- [2] Baker, et al. (2013). Summary report of the AAPOR task force on non-probability sampling. *Journal of Survey Statistics and Methodology*, 1:90–143.
- [3] Lee, S. and Valliant, R. (2009). Estimation for volunteer panel Web surveys using propensity score adjustment and calibration adjustment. *Sociological Methods & Research*, *37*(3): 319-343.
- [4] Valliant, R., & Dever, J. A. (2011). Estimating propensity adjustments for volunteer web surveys. Sociological Methods & Research, 40(1):105–137.
- [5] Tourangeau, R., Conrad, F.G. and Couper M.P. (2013), The Science of Web Surveys, New York: Oxford University Press.
- [6] Yeager, et al. (2011), Comparing the accuracy of RDD telephone surveys and internet surveys conducted with probability and non-probability samples. *Public Opinion Quarterly*, 75(4): 709–747.
- [7] Dever, J. A. & Valliant, R. (2010). A comparison of variance estimators for poststratification to estimated control totals. *Survey Methodology*, *36*(1): 45–56.
- [8] Kott, P.S. (2006). Using Calibration Weighting to Adjust for Nonresponse and Coverage Errors. *Survey Methodology*, 32(2): 133–142.

More Information

Jill A. Dever Senior Survey Statistician Washington, DC jdever@rti.org

