Non-Probability Sampling Assumptions and Methods

J. Michael Brick
Westat
The Non-Probability Sampling Explosion

• Global $$$ for online research 19% to 35% from 2006-12
• 43% of all surveys conducted online in 2012
• Online surveys used by all types of organizations
 – Commercial
 – Academic
 – Government
Non-Probability Sampling (NPS) Literature

• Two AAPOR panels
• Monograms
• Ever increasing number of journal articles from many disciplines
• International scope
What Is **THE** Issue

- **Representation**
 - Probability sampling is strong on representation
 - Fixed sampling frame and probabilities of selection basis for inference that is relatively robust despite problems
- **Non-probability sampling** weaker on representation
 - Models and assumptions that are hard to justify or test
NPS Online Design Approaches

• Matching
 – Identify units from a probability sample or census that have characteristics highly related to the key survey outcome variables and locate NPS respondents matching those characteristics

• Quotas
 – Essentially the same as matching but typically based on demographic variables

• Blending
 – Combining samples; sometimes NPS with probability sample and sometimes multiple NPS
Typical NPS Weighting Approaches

• Weight observed sample with initial weights of unity
 – Unweighted
 – Poststratification or raking
 – Inverse Probability Weighting (IPW)
Poststratification or Raking

• Consider Outcome model
 \[E_{O}y_k = \mu + \alpha_g = \mu_g \text{ for all } k \in s_g , \ g=1,...,G \]

• Poststratification (unweighted poststratification cell mean adjusted to population total for the cell) is unbiased under this model

• Poststratification is criticized as not accounting for selection bias
Inverse Probability Weighting

• Consider Missingness Model

\[E_M (R_k | Z) = \pi_{Z_k} \]

where \(\pi_{Z_k} \) is propensity of unit \(k \)

• Inverse of propensity score adjustment (observation weighted using reference sample, see Lee (2006)) is unbiased under this model

- IPW criticized as being unstable when propensities are extreme
A Compositional Model

• First IPW then poststratification to give \(\{w_k\} \)

• Lee and Valliant (2009) describe this weighting method

• Related to calibration and doubly robust augmented IPW (AIPW), but called compositional because only counts of population controls allowed (GREG not in this class)
Properties

1) \(w_k > 0 \ \forall \ k \in s \)

2) \(\sum_{k \in s} w_k \delta_k = N \) where \(N \) is a vector of pop totals

3) Estimates of totals are linear or smooth function of estimated totals

4) Unbiased and consistent if either outcome or missingness model holds
Marginal Structural Model

• Structural model specified by mean and variance models.
• Assume a population structure with clustering generates the data and observations within cluster may be correlated (for variance computation).
• Resample clusters to estimate variance of estimates

• Under the models \hat{y}_{com} is unbiased and consistent and, with large samples, 95% CI is

$$\hat{y}_{com} \pm 2\sqrt{v(\hat{y}_{com})}$$
Case Study

- Collaboration between Pew Research Center, SurveyMonkey, and Westat.
- SurveyMonkey Audience Panel (9/14)
 - 5,301 adult respondents
- ABS (mail) survey (9-10/14) RR=29%
 - 2,668 respondents
 - Serves as reference sample
Weighting Methods

<table>
<thead>
<tr>
<th></th>
<th>IPW</th>
<th>Raking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raking</td>
<td>None</td>
<td>7 dimensions</td>
</tr>
<tr>
<td>IPW-L</td>
<td>Logistic - 4 groups</td>
<td>None</td>
</tr>
<tr>
<td>Comp-L</td>
<td>Logistic - 4 groups</td>
<td>7 dimensions</td>
</tr>
<tr>
<td>Comp-N</td>
<td>Exact - 16 groups</td>
<td>7 dimensions</td>
</tr>
</tbody>
</table>

- Variance computed using jackknife based on MSA of respondent
Comparing Web and Mail Substantive Estimates
Diagnostics

• Examine effects and assumptions
 – Begin with bias reduction due to raking
 – Assess propensity model fit and IPW adjustments
 – Assess outcome model for a particular estimate
Effect of Poststratification or Raking on Bias

• The Relative Raking Effect (RE) is a measure of how much an estimate changes (relative to the IPW estimate) due to raking.
• Computed for substantive items in Web survey is a modification of the poststratified measure

\[
RE(y) = 100 \left(\frac{\sum_g N_g \hat{N}_{ipw,g} \tilde{y}_g - \sum_g \tilde{y}_g}{\sum_g \tilde{y}_g} \right)
\]
Relative Raking Effect for Substantive Items

Little effect on estimates when percentage is greater than 20%
Common Support Analysis

- IPW is intended to reduce selection bias
- Commonly used tool of causal analysis is examination of the propensity distributions of the control (in our case Mail PS survey) and treated sample (Web NPS survey)
 - Shown for the IPW-L propensities
IPW-L Propensity Distribution
IPW Adjustment Factors

• The graph shows weak evidence for the common support assumption and raises concerns about the effectiveness and stability of the IPW adjustments

• Considerable range of weights and instability when using the logistic regression approach (IPW-L)
IPW-N Relative Adjustment Factors

Variance inflation due to weighting = 1.65

Blue are IPW cells with daily internet use

Red are IPW cells with less than daily internet use
Closer Look at Outcome Model

• Under model we would assume standardized differences from the “predicted” mean would be approximately $\mathcal{N}(0,1)$

• Examine this for “how you rate your health” by computing residuals from raking dimension means across other raking dimensions
QQ Plot of Residuals for Comp-N estimates
Variance Estimation

- Estimated design effect (deff) is not simply the clustering and weight adjustment effect
- Median deff for Comp-L is 14.9 (mean 48.3)
 - Without replicating, median is 5.8/mean 6.2
 - Hugely unstable logistic model of propensity
- Median deff for Comp-N is 5.5 (mean 6.5)
 - No difference with replicating IPW-N
 - This means the effective sample size is closer to 1,000 than 5,000
Discussion

• The formal structure helps in evaluating NPS
• Assumptions for unbiased estimation not well supported
• We need more evaluation tools
 – Especially tools for understanding when estimates from NPS may be more reliable are needed
What About PS?

• Tools and more theory needed for PS since 10% response rates and low coverage rates are too far from assumptions of design-based theory

• Compositional model may be applicable
 – Current set of tools for evaluating effectiveness of weighting are very limited
Thanks !!!
mikebrick@westat.com