Discussion of Talk by Jonathan Wright

William R. Bell, U.S. Census Bureau

November 20, 2019
Disclaimer:

The views expressed here are those of the author and not those of the U.S. Census Bureau.
Comment on 2 topics covered by Jonathan Wright:

1. Comparing MSEs of X-11 and canonical ARIMA (SEATS) seasonal adjustments

2. Residual seasonality in NIPA data
2. Residual seasonality in NIPA data

- Proof of concept that direct seasonal adjustment (of GDP) avoids the problem
2. Residual seasonality in NIPA data

- Proof of concept that direct seasonal adjustment (of GDP) avoids the problem
- Reasons for doing indirect seasonal adjustment:
2. Residual seasonality in NIPA data

- Proof of concept that direct seasonal adjustment (of GDP) avoids the problem

- Reasons for doing indirect seasonal adjustment:
 - potential to better capture seasonality arising from different seasonal patterns in different component series
2. Residual seasonality in NIPA data

- Proof of concept that direct seasonal adjustment (of GDP) avoids the problem

- Reasons for doing indirect seasonal adjustment:
 - potential to better capture seasonality arising from different seasonal patterns in different component series
 - consistency: aggregated SA data is the SA aggregate
2. Residual seasonality in NIPA data

- Proof of concept that direct seasonal adjustment (of GDP) avoids the problem

- Reasons for doing indirect seasonal adjustment:
 - potential to better capture seasonality arising from different seasonal patterns in different component series
 - consistency: aggregated SA data is the SA aggregate

- Do the advantages of indirect SA (of GDP) offset the disadvantage of possible residual seasonality that could potentially be avoided by direct SA?
Cautions about model used to test for residual seasonality

\[y_t = \alpha + \rho y_{t-1} + \beta_1 D_{1t} + \beta_2 D_{2t} + \beta_3 D_{3t} + \varepsilon_t \quad t = 1, \ldots, n \]

Bell (2012) shows that both X-11 and model-based SA filters, symmetric and asymmetric, annihilate fixed seasonal effects
Cautions about model used to test for residual seasonality

\[y_t = \alpha + \rho y_{t-1} + \beta_1 D_{1t} + \beta_2 D_{2t} + \beta_3 D_{3t} + \epsilon_t \quad t = 1, \ldots, n \]

Bell (2012) shows that both X-11 and model-based SA filters, symmetric and asymmetric, annihilate fixed seasonal effects

\[\Rightarrow \beta_1 = \beta_2 = \beta_3 = 0 \]
Cautions about model used to test for residual seasonality

\[y_t = \alpha + \rho y_{t-1} + \beta_1 D_{1t} + \beta_2 D_{2t} + \beta_3 D_{3t} + \epsilon_t \quad t = 1, \ldots, n \]

Bell (2012) shows that both X-11 and model-based SA filters, symmetric and asymmetric, annihilate fixed seasonal effects

- \(\Rightarrow \beta_1 = \beta_2 = \beta_3 = 0 \)
- For this reason Findley, Lytras, and McElroy (2017) studied applying model-based F-test of fixed seasonality to just part of the adjusted series (e.g., the last 8 years)
Cautions about model used to test for residual seasonality

\[y_t = \alpha + \rho y_{t-1} + \beta_1 D_{1t} + \beta_2 D_{2t} + \beta_3 D_{3t} + \epsilon_t \quad t = 1, \ldots, n \]

1 Bell (2012) shows that both X-11 and model-based SA filters, symmetric and asymmetric, annihilate fixed seasonal effects

\[\Rightarrow \beta_1 = \beta_2 = \beta_3 = 0 \]

For this reason Findley, Lytras, and McElroy (2017) studied applying model-based F-test of fixed seasonality to just part of the adjusted series (e.g., the last 8 years)

2 The autocovariance structure of the adjusted series can be very complex, making modeling of it difficult, which can compromise significance tests
Cautions about model used to test for residual seasonality

\[y_t = \alpha + \rho y_{t-1} + \beta_1 D_{1t} + \beta_2 D_{2t} + \beta_3 D_{3t} + \varepsilon_t \quad t = 1, \ldots, n \]

1. Bell (2012) shows that both X-11 and model-based SA filters, symmetric and asymmetric, annihilate fixed seasonal effects
 - \[\Rightarrow \beta_1 = \beta_2 = \beta_3 = 0 \]
 - For this reason Findley, Lytras, and McElroy (2017) studied applying model-based F-test of fixed seasonality to just part of the adjusted series (e.g., the last 8 years)

2. The autocovariance structure of the adjusted series can be very complex, making modeling of it difficult, which can compromise significance tests
 - negative autocorrelation at seasonal lags
Cautions about model used to test for residual seasonality

\[y_t = \alpha + \rho y_{t-1} + \beta_1 D_{1t} + \beta_2 D_{2t} + \beta_3 D_{3t} + \varepsilon_t \quad t = 1, \ldots, n \]

1. Bell (2012) shows that both X-11 and model-based SA filters, symmetric and asymmetric, annihilate fixed seasonal effects
 - \[\Rightarrow \beta_1 = \beta_2 = \beta_3 = 0 \]
 - For this reason Findley, Lytras, and McElroy (2017) studied applying model-based F-test of fixed seasonality to just part of the adjusted series (e.g., the last 8 years)

2. The autocovariance structure of the adjusted series can be very complex, making modeling of it difficult, which can compromise significance tests
 - negative autocorrelation at seasonal lags
 - nonstationary variances and autocorrelations (even after appropriate differencing) due to the effects of using asymmetric filters at the ends of the series
Cautions about model used to test for residual seasonality

\[y_t = \alpha + \rho y_{t-1} + \beta_1 D_{1t} + \beta_2 D_{2t} + \beta_3 D_{3t} + \epsilon_t \quad t = 1, \ldots, n \]

1. Bell (2012) shows that both X-11 and model-based SA filters, symmetric and asymmetric, annihilate fixed seasonal effects
 - \(\Rightarrow \beta_1 = \beta_2 = \beta_3 = 0 \)
 - For this reason Findley, Lytras, and McElroy (2017) studied applying model-based F-test of fixed seasonality to just part of the adjusted series (e.g., the last 8 years)

2. The autocovariance structure of the adjusted series can be very complex, making modeling of it difficult, which can compromise significance tests
 - negative autocorrelation at seasonal lags
 - nonstationary variances and autocorrelations (even after appropriate differencing) due to the effects of using asymmetric filters at the ends of the series

3. Instead of an ARMAX form as above, why not use

\[y_t = \alpha + \beta_1 D_{1t} + \beta_2 D_{2t} + \beta_3 D_{3t} + z_t \quad (1 - \rho B)z_t = \epsilon_t \]
1. Comparing MSEs of X-11 and canonical ARIMA (SEATS) seasonal adjustments

JW Conclusions from Monte Carlo Simulation
- X-13 automatic filter selection tends to select too short seasonal MAs
- Conclusions consistent with other literature
- Model-based SA does better than X-11
- X-11 can get close in some cases
 - But not if θ_{12} is close to zero

Compare and contrast results and conclusions with those of
- Chu, Tiao, and Bell (2012) – for infinite symmetric filters
- Bell, Chu, and Tiao (2012) – for infinite concurrent filters and finite filters
Seasonal adjustment MSE (= estimated seasonal MSE)

\[y_t = S_t + T_t + I_t \quad t = 1, \ldots, n \]

- Assume a monthly airline model and consider various sets of \((\theta_1, \theta_{12})\) with \(\sigma_a^2 = 1\)
Seasonal adjustment MSE (\(=\) estimated seasonal MSE)

\[y_t = S_t + T_t + I_t \quad t = 1, \ldots, n \]

- Assume a monthly airline model and consider various sets of \((\theta_1, \theta_{12})\) with \(\sigma_a^2 = 1\)
- Optimal (MMSE) predictor of \(S_t\) is \(\hat{S}_t = E(S_t|\{y_t\})\) under the true model with known parameters
Seasonal adjustment MSE (= estimated seasonal MSE)

\[y_t = S_t + T_t + I_t \quad t = 1, \ldots, n \]

- Assume a monthly airline model and consider various sets of \((\theta_1, \theta_{12})\) with \(\sigma_a^2 = 1\)
- Optimal (MMSE) predictor of \(S_t\) is \(\hat{S}_t = E(S_t|\{y_t\})\) under the true model with known parameters
- Error for any other predictor \(\tilde{S}_t\) is \(S_t - \tilde{S}_t = (S_t - \hat{S}_t) + (\hat{S}_t - \tilde{S}_t)\)
Seasonal adjustment MSE (≈ estimated seasonal MSE)

\[y_t = S_t + T_t + I_t \quad t = 1, \ldots, n \]

- Assume a monthly airline model and consider various sets of \((\theta_1, \theta_{12})\) with \(\sigma^2_a = 1\)
- Optimal (MMSE) predictor of \(S_t\) is \(\hat{S}_t = E(S_t|\{y_t\})\) under the true model with known parameters
- Error for any other predictor \(\tilde{S}_t\) is \(S_t - \tilde{S}_t = (S_t - \hat{S}_t) + (\hat{S}_t - \tilde{S}_t)\)
- \(S_t - \hat{S}_t\) is orthogonal to (uncorrelated with) any function of the data \(\{y_t\}\), including \(\hat{S}_t - \tilde{S}_t\)

\[\Rightarrow MSE(\tilde{S}_t) \equiv E[(S_t - \tilde{S}_t)^2] = E[(S_t - \hat{S}_t)^2] + E[(\hat{S}_t - \tilde{S}_t)^2] = g_1 + g_3 \]

where
Seasonal adjustment MSE (≈ estimated seasonal MSE)

\[y_t = S_t + T_t + I_t \quad t = 1, \ldots, n \]

- Assume a monthly airline model and consider various sets of \((\theta_1, \theta_{12})\) with \(\sigma_a^2 = 1\)

- Optimal (MMSE) predictor of \(S_t\) is \(\hat{S}_t = E(S_t|\{y_t\})\) under the true model with known parameters

- Error for any other predictor \(\tilde{S}_t\) is \(S_t - \tilde{S}_t = (S_t - \hat{S}_t) + (\hat{S}_t - \tilde{S}_t)\)

- \(S_t - \hat{S}_t\) is orthogonal to (uncorrelated with) any function of the data \(\{y_t\}\), including \(\hat{S}_t - \tilde{S}_t\)

\[\Rightarrow \text{MSE}(\tilde{S}_t) \equiv E[(S_t - \tilde{S}_t)^2] = E[(S_t - \hat{S}_t)^2] + E[(\hat{S}_t - \tilde{S}_t)^2] = g_1 + g_3 \]

where

- \(g_1 = E[(S_t - \hat{S}_t)^2]\) MSE of optimal predictor
Seasonal adjustment MSE (≡ estimated seasonal MSE)

\[y_t = S_t + T_t + I_t \quad t = 1, \ldots, n \]

- Assume a monthly airline model and consider various sets of \((\theta_1, \theta_{12})\) with \(\sigma_a^2 = 1\)
- Optimal (MMSE) predictor of \(S_t\) is \(\hat{S}_t = E(S_t|\{y_t\})\) under the true model with known parameters
- Error for any other predictor \(\tilde{S}_t\) is \(S_t - \tilde{S}_t = (S_t - \hat{S}_t) + (\hat{S}_t - \tilde{S}_t)\)
- \(S_t - \hat{S}_t\) is orthogonal to (uncorrelated with) any function of the data \(\{y_t\}\), including \(\hat{S}_t - \tilde{S}_t\)

\[\Rightarrow \text{MSE}(\tilde{S}_t) \equiv E[(S_t - \tilde{S}_t)^2] = E[(S_t - \hat{S}_t)^2] + E[(\hat{S}_t - \tilde{S}_t)^2] = g_1 + g_3 \]

where
- \(g_1 = E[(S_t - \hat{S}_t)^2]\) MSE of optimal predictor
- \(g_3 = E[(\hat{S}_t - \tilde{S}_t)^2]\) MS difference of \(\tilde{S}_t\) from optimal predictor \(\hat{S}_t\).
For \tilde{S}_t a model-based predictor of S_t, g_3 reflects the effects of
- parameter estimation error
- model selection error (which changes the canonical decomposition)

For \tilde{S}_t from X-11 adjustment, g_3 reflects the effects of
- model selection error and parameter estimation error (affects only forecast extension – minor)
- difference between X-11 filter and optimal model-based filter
 - find which X-11 filter choice minimizes this error
Recall that seasonal adjustment MSE is $E[(S_t - \tilde{S}_t)^2] = g_1 + g_3$.

For any given model, g_1 is the same for any predictor \tilde{S}_t, while g_3 varies with \tilde{S}_t.

JW estimates g_3 by simulation:

- reports results on $\sqrt{g_3}$ and ignores g_1.

We ignore g_3 for model-based adjustment, and for X-11 adjustment our g_3 ignores model selection error and parameter estimation error.

- report MSEs and % differences in MSE between X-11 and optimal model-based adjustment:

\[
\text{MSE % difference} = 100 \times \left(\frac{g_1 + g_3}{g_1} - 1 \right) = 100 \times \left(\frac{g_3}{g_1} \right)
\]

- scaling g_3 by $100/g_1$ aids interpretation of the results.
Other differences between the two approaches to comparisons

<table>
<thead>
<tr>
<th>Jonathan Wright</th>
<th>Bell, Chu, & Tiao</th>
</tr>
</thead>
<tbody>
<tr>
<td>reports RMSEs</td>
<td>reports MSEs</td>
</tr>
<tr>
<td>MSEs calculated by simulation</td>
<td>MSEs calculated by analytical formulas</td>
</tr>
<tr>
<td>averages results over $t = 1, \ldots, n$</td>
<td>separate results for $t = n/2$ and $t = n$</td>
</tr>
<tr>
<td>$n = 120$ (10 years)</td>
<td>use full forecast extension for X-11</td>
</tr>
<tr>
<td>include X-11 stable seasonal filter</td>
<td>results for 8, 12, 16, 20, 40, ∞ years</td>
</tr>
<tr>
<td></td>
<td>include X-11 3×15 seasonal MA</td>
</tr>
</tbody>
</table>
Comparing MSEs for X-11 and Model-based Filters

Canonical decomposition of the airline model with $\theta_1 = .5$

<table>
<thead>
<tr>
<th>Infinite filter results</th>
<th>θ_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Best X-11 seasonal MA</th>
<th>3×1</th>
<th>3×5</th>
<th>3×15</th>
<th>3×15</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MSE % increase for X-11</th>
<th>symmetric filter</th>
<th>concurrent filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>14%</td>
<td>14%</td>
<td>14%</td>
</tr>
<tr>
<td>6%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>33%</td>
<td>33%</td>
<td>33%</td>
</tr>
<tr>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>9%</td>
<td>9%</td>
<td>9%</td>
</tr>
</tbody>
</table>
Percent Differences in MSE, X−11 versus Model−Based Seasonal Adjustment

theta12 = .9, S315H9 symmetric filter

theta12 = .8, S315H9 symmetric filter

theta12 = .9, S315H9 concurrent filter

theta12 = .8, S315H9 concurrent filter
Percent Differences in MSE, X-11 versus Model-Based Seasonal Adjustment

theta1₂ = .5, S35H23 symmetric filter

theta1₂ = .2, S31H23 symmetric filter

theta1₂ = .5, S35H23 concurrent filter

theta1₂ = .2, S31H23 concurrent filter
Summary of Conclusions from CTB and BCT

- Length of best X-11 seasonal MA increases with θ_{12}. X-13 automatic filter selection sometimes picks shorter seasonal MAs than the best (assessed in a small simulation study).
Summary of Conclusions from CTB and BCT

- Length of best X-11 seasonal MA increases with θ_{12}. X-13 automatic filter selection sometimes picks shorter seasonal MAs than the best (assessed in a small simulation study).

- The best X-11 filters generally do pretty well for estimating the canonical decomposition, especially for concurrent adjustment or finite sample adjustments with a series that is not long.
Summary of Conclusions from CTB and BCT

- Length of best X-11 seasonal MA increases with θ_{12}. X-13 automatic filter selection sometimes picks shorter seasonal MAs than the best (assessed in a small simulation study).

- The best X-11 filters generally do pretty well for estimating the canonical decomposition, especially for concurrent adjustment or finite sample adjustments with a series that is not long.

- Lone exception where best X-11 filter does poorly: seasonal adjustment in the middle of a very long series when θ_{12} is large (.9).
Length of best X-11 seasonal MA increases with θ_{12}. X-13 automatic filter selection sometimes picks shorter seasonal MAs than the best (assessed in a small simulation study).

The best X-11 filters generally do pretty well for estimating the canonical decomposition, especially for concurrent adjustment or finite sample adjustments with a series that is not long.

Lone exception where best X-11 filter does poorly: seasonal adjustment in the middle of a very long series when θ_{12} is large (0.9).

Other X-11 filters with a seasonal MA close to the best choice (for example, 3 x 3 when $\theta_{12} = .5$) have only slightly larger MSEs. X-11 filters far from the best can have larger MSE increases.