Complex Survey Variance and Design Effects in R
using the Rstan and Survey packages

Matt Williams1 Terrance Savitsky2

1National Center for Science and Engineering Statistics
National Science Foundation
mrwillia@nsf.gov

2Office of Survey Methods Research
Bureau of Labor Statistics
Savitsky.Terrance@bls.gov

GASP
Sept 23, 2019
Population Inference from Complex Survey Samples

► **Goal:** perform inference about a finite population generated from an unknown model, P_{θ_0}.

► **Data:** from under a complex sampling design distribution, P_{ν}
 - Probabilities of inclusion π_i are often associated with the variable of interest (purposefully)
 - Sampling designs are “informative”: the balance of information in the sample \neq balance in the population.

► **Biased Estimation:** estimate P_{θ_0} without accounting for P_{ν}.
 - Use inverse probability weights $w_i = 1/\pi_i$ to mitigate bias.

► **Incorrect Uncertainty Quantification:**
 - Failure to account for dependence induced by P_{ν} leads to standard errors and confidence intervals that are the wrong size.
Variance Estimation

The de-facto approach:
- approximate sampling independence of the primary sampling units (Heeringa et al. 2010).
- within-cluster dependence treated as nuisance

Two common methods:
- Taylor linearization and replication based methods.
Taylor Linearization

Let \(y_{ij}, X_{ij}, \) and \(w_{ij} \) be the observed data for individual \(i \) in cluster \(j \) of the sample. Assume the parameter \(\theta \) is a vector of dimension \(d \) with population model value \(\theta_0 \).

1. Approximate an estimate \(\hat{\theta} \), or a ‘residual’ \((\hat{\theta} - \theta_0) \), as a weighted sum: \(\hat{\theta} \approx \sum_{i,j} w_{ij} z_{ij}(\theta) \) where \(z_{ij} \) is a function evaluated at the current values of \(y_{ij}, X_{ij}, \) and \(\hat{\theta} \).

2. Compute the weighted components for each cluster (e.g., primary sampling units (PSUs)): \(\hat{\theta}_j = \sum_i w_{ij} z_{ij}(\theta) \).

3. Compute the variance between clusters:

\[
\hat{\text{Var}}(\hat{\theta}) = \frac{1}{J-d} \sum_{j=1}^{J}(\hat{\theta} - \hat{\theta}_j)(\hat{\theta} - \hat{\theta}_j)^T
\]

4. For stratified designs, compute \(\hat{\theta}_s \) and \(\hat{\text{Var}}(\hat{\theta}_s) \) within strata and sum

\[
\hat{\text{Var}}(\hat{\theta}) = \sum_s \hat{\text{Var}}(\hat{\theta}_s).
\]
Replication

Let y_{ij}, X_{ij}, and w_{ij} be the observed data for individual i in cluster j of the sample. Assume the parameter θ is a vector of dimension d with population model value θ_0.

1. Through randomization (bootstrap), leave-one-out (jackknife), or orthogonal contrasts (balanced repeated replicates), create a set of K replicate weights $(w_i)_k$ for all $i \in S$ and for every $k = 1, \ldots, K$.

2. Each set of weights has a modified value (usually 0) for a subset of clusters, and typically has a weight adjustment to the other clusters to compensate: $\sum_{i \in S} (w_i)_k = \sum_{i \in S} w_i$ for every k.

3. Estimate $\hat{\theta}_k$ for each replicate $k \in 1, \ldots, K$.

4. Compute the variance between replicates:

$$\widehat{Var}(\hat{\theta}) = \frac{1}{K-d} \sum_{k=1}^K (\hat{\theta} - \hat{\theta}_k)(\hat{\theta} - \hat{\theta}_k)^T.$$

5. For stratified designs, generate replicates such that each strata is represented in every replicate.
There are two notable trade-offs associated with these methods:

- **Taylor linearization**: value $\hat{\theta}$ computed once then used in a plug in for $z_i(\theta)$.
 - Replication methods: estimate $\hat{\theta}_k$ computed K times.
 - Sizable differences in computational effort

- **Replication methods**: no derivatives are needed.
 - Taylor linearization: requires the calculation of a gradient to derive the analytical form of the first order approximation $z_i(\theta)$.
 - This poses significant analytical challenges for all but the simplest models.
Some Improvements

▶ **Abstraction of Derivatives** (less analytic work for Taylor Linearization)
 ▶ Recent advances in *algorithmic differentiation* (Margossian 2018), allows us to specify the model as a log density but only treat the gradient in the abstract without specifying it analytically.
 ▶ Implemented in *Stan* and *Rstan* (Carpenter 2015, Stan Development Team 2016)

▶ **Hybrid Approach** or Taylor Linearization for replicate designs (less computation for Replication approaches)
 ▶ Survey package (Lumley 2016) to calculate replication *variance of gradient*
 ▶ Use plug in for θ, only estimate *once*
Example: Design Effect for Survey-Weighted Bayes

- Pseudo posterior \propto Pseudo Likelihood \times Prior

\[
\pi^\pi (\lambda | y, \tilde{w}) \propto \left[\prod_{i=1}^{n} \pi (y_i | \lambda)^{\tilde{w}_i} \right] \pi (\lambda)
\]

- Variances Differ:
 - Weighted MLE: $H_{\theta_0}^{-1} J_{\theta_0}^\pi H_{\theta_0}^{-1}$ (Robust)
 - Weighted Posterior: $H_{\theta_0}^{-1}$ (Model-Based)

- Adjust for Design Effect: $R_2^{-1} R_1$
 - $\hat{\theta}_m \equiv$ sample pseudo posterior for $m = 1, \ldots, M$ draws with mean $\bar{\theta}$
 - $\hat{\theta}_m^a = \left(\hat{\theta}_m - \bar{\theta} \right) R_2^{-1} R_1 + \bar{\theta}$
 - where $R_1' R_1 = H_{\theta_0}^{-1} J_{\theta_0}^\pi H_{\theta_0}^{-1}$
 - $R_2' R_2 = H_{\theta_0}^{-1}$
R Code Schematic

Stan Model

Input -> R Code -> Output

- Sampling (rstan)
- Grad_log_prob (rstan)
- WithReplicates (survey)
- Aaply (plyr)

Survey Design

- Svrepdesign (survey)
- Reps

Output (\(\hat{\theta}_m \))

\(\tilde{\theta} \)

\(\theta \)

\(\hat{H}_\theta \)

\(J_{\theta}^\pi \)

\(\hat{\theta}_m^a \)

URL: http://arxiv.org/abs/1811.05031

URL: http://mc-stan.org/