Introducing *gobbl*!

Deep learning with text doesn’t have to be scary

Jason Nance
Data Scientist
RTI International
Using a State of the Art Model for Text Classification

Line Count: 0 101 108 142 167 187
Best Scores on DBpedia Classification Benchmark*

* https://paperswithcode.com/sota/text-classification-on-dbpedi
The Problem: Hard-Coding for Benchmark Problems

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Model</th>
<th>URL</th>
<th>Score</th>
<th>CoLA</th>
<th>SST-2</th>
<th>MRPC</th>
<th>STS-B</th>
<th>QQP</th>
<th>MNLI-m</th>
<th>MNLI-mm</th>
<th>QNLI</th>
<th>RTE</th>
<th>WNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microsoft D365 AI & UMD</td>
<td>Adv-RoBERTa (ensemble)</td>
<td></td>
<td>88.8</td>
<td>68.0</td>
<td>96.8</td>
<td>93.1</td>
<td>90.8</td>
<td>92.4</td>
<td>92.2</td>
<td>74.8</td>
<td>90.3</td>
<td>91.1</td>
<td>90.7</td>
</tr>
<tr>
<td>2</td>
<td>Facebook AI</td>
<td>RoBERTa</td>
<td></td>
<td>86.5</td>
<td>67.8</td>
<td>96.7</td>
<td>92.3</td>
<td>89.8</td>
<td>92.2</td>
<td>91.9</td>
<td>74.3</td>
<td>90.2</td>
<td>90.8</td>
<td>90.2</td>
</tr>
<tr>
<td>3</td>
<td>XLNet Team</td>
<td>XLNet-Large (ensemble)</td>
<td></td>
<td>88.4</td>
<td>67.8</td>
<td>96.8</td>
<td>93.0</td>
<td>90.7</td>
<td>91.6</td>
<td>91.1</td>
<td>74.2</td>
<td>90.3</td>
<td>90.2</td>
<td>89.8</td>
</tr>
<tr>
<td>4</td>
<td>Microsoft D365 AI & MSR AI MT-DNN-ensemble</td>
<td></td>
<td></td>
<td>87.6</td>
<td>66.4</td>
<td>96.5</td>
<td>92.7</td>
<td>90.3</td>
<td>91.1</td>
<td>90.7</td>
<td>73.7</td>
<td>89.9</td>
<td>87.9</td>
<td>87.4</td>
</tr>
<tr>
<td>5</td>
<td>GLUE Human Baselines</td>
<td>GLUE Human Baselines</td>
<td></td>
<td>87.1</td>
<td>66.4</td>
<td>97.8</td>
<td>86.3</td>
<td>80.8</td>
<td>92.7</td>
<td>92.6</td>
<td>59.5</td>
<td>80.4</td>
<td>92.0</td>
<td>92.8</td>
</tr>
<tr>
<td>6</td>
<td>王玮</td>
<td>ALICE large ensemble (Alibaba DAMO NLP)</td>
<td></td>
<td>87.0</td>
<td>69.2</td>
<td>95.2</td>
<td>92.6</td>
<td>90.2</td>
<td>91.1</td>
<td>90.6</td>
<td>74.4</td>
<td>90.7</td>
<td>88.2</td>
<td>87.9</td>
</tr>
<tr>
<td>7</td>
<td>Stanford Hazy Research</td>
<td>Snorkel MeTaL</td>
<td></td>
<td>83.2</td>
<td>63.8</td>
<td>96.2</td>
<td>91.5</td>
<td>88.5</td>
<td>90.1</td>
<td>89.7</td>
<td>73.1</td>
<td>89.9</td>
<td>87.6</td>
<td>87.2</td>
</tr>
<tr>
<td>8</td>
<td>XLM Systems</td>
<td>XLM (English only)</td>
<td></td>
<td>83.1</td>
<td>62.9</td>
<td>95.6</td>
<td>90.7</td>
<td>87.1</td>
<td>88.8</td>
<td>88.2</td>
<td>73.2</td>
<td>89.8</td>
<td>89.1</td>
<td>88.5</td>
</tr>
<tr>
<td>9</td>
<td>Zhuosheng Zhang</td>
<td>SemBERT</td>
<td></td>
<td>82.9</td>
<td>62.3</td>
<td>94.6</td>
<td>91.2</td>
<td>88.3</td>
<td>87.8</td>
<td>86.7</td>
<td>72.8</td>
<td>89.8</td>
<td>87.6</td>
<td>86.3</td>
</tr>
<tr>
<td>10</td>
<td>Danqi Chen</td>
<td>SpanBERT (single-task training)</td>
<td></td>
<td>82.8</td>
<td>64.3</td>
<td>94.8</td>
<td>90.9</td>
<td>87.9</td>
<td>89.9</td>
<td>89.1</td>
<td>71.9</td>
<td>89.5</td>
<td>88.1</td>
<td>87.7</td>
</tr>
<tr>
<td>11</td>
<td>Kevin Clark</td>
<td>BERT + BAM</td>
<td></td>
<td>82.3</td>
<td>61.5</td>
<td>95.2</td>
<td>91.3</td>
<td>88.3</td>
<td>88.6</td>
<td>87.9</td>
<td>72.5</td>
<td>89.7</td>
<td>86.6</td>
<td>85.8</td>
</tr>
<tr>
<td>12</td>
<td>Nitish Shirish Keskar</td>
<td>Span-Extractive BERT on STILTs</td>
<td></td>
<td>82.3</td>
<td>63.2</td>
<td>94.5</td>
<td>90.6</td>
<td>87.6</td>
<td>89.4</td>
<td>89.2</td>
<td>72.2</td>
<td>89.4</td>
<td>86.5</td>
<td>85.8</td>
</tr>
<tr>
<td>13</td>
<td>Jason Phang</td>
<td>BERT on STILTs</td>
<td></td>
<td>82.0</td>
<td>62.1</td>
<td>94.3</td>
<td>90.2</td>
<td>86.6</td>
<td>88.7</td>
<td>88.3</td>
<td>71.9</td>
<td>89.4</td>
<td>86.4</td>
<td>85.6</td>
</tr>
<tr>
<td>14</td>
<td>廖亿</td>
<td>RGLM-baso (Huawei Noah's Ark Lab)</td>
<td></td>
<td>81.0</td>
<td>55.1</td>
<td>94.2</td>
<td>90.7</td>
<td>87.7</td>
<td>89.5</td>
<td>88.7</td>
<td>72.2</td>
<td>89.4</td>
<td>85.6</td>
<td>85.1</td>
</tr>
<tr>
<td>15</td>
<td>Jacob Devlin</td>
<td>BERT: 24-layers, 16-heads, 1024-hidden</td>
<td></td>
<td>80.5</td>
<td>60.5</td>
<td>94.9</td>
<td>89.3</td>
<td>86.5</td>
<td>87.6</td>
<td>86.5</td>
<td>72.1</td>
<td>89.3</td>
<td>86.7</td>
<td>85.9</td>
</tr>
</tbody>
</table>

[https://gluebenchmark.com/leaderboard/]
gobbli: A Uniform Interface for Text Deep Learning Models

User → Data → gobbli → BERT, fastText, ...

User → Output
gobblı: Library Design

Users

Experiment Results

Experiment API

Task API

Training
Prediction
Embeddings

Docker

BERT
fastText
...

API

Experiment

Results
gobbli: Additional Features

Data Augmentation

• Word2Vec
• WordNet
• BERT Masked Language Model
gobbli: Additional Features

Document Windowing

BERT

\[P(\text{pos}) = 0.1 \]

\[P(\text{pos}) = 0.2 \]

\[P(\text{pos}) = 0.9 \]

\[P(\text{pos}) = 0.8 \]

\[P(\text{pos}) = 0.5 \]
gobbli: Benefits and Drawbacks

+ Cross-platform
+ Abstracts dependency management

- Latency/overhead

+ Parallel/distributed training
- Experiment API only
Example Experiment Results
Example Experiment Results: Metrics

Metrics:

Weighted F1 Score: 0.8806791429898766
Weighted Precision Score: 0.8806909370983464
Weighted Recall Score: 0.88068
Accuracy: 0.88068

Classification Report:

<table>
<thead>
<tr>
<th></th>
<th>precision</th>
<th>recall</th>
<th>f1-score</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>neg</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>12500</td>
</tr>
<tr>
<td>pos</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>12500</td>
</tr>
<tr>
<td>accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>macro avg</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>25000</td>
</tr>
<tr>
<td>weighted avg</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>25000</td>
</tr>
</tbody>
</table>
True Class: comp.os.ms-windows.misc

Predicted Class: sci.med (Probability: 0.97)

Text:
“My wife is a physiotherapist and she is looking for some cliparts of skeleton and male/female body. We're currently using Windows Draw which can import all kind of graphic formats. Therefore, anything will do. Please advise ...”
gobbli: Status and Next Steps

- **Initial open source release on GitHub**
 - https://github.com/RTIInternational/gobbli/
 - Models implemented: BERT, MT-DNN, USE, fastText, pytorch_transformers (XLNet, XLM, BERT, RoBERTa)

- **Next steps:**
 - Support multilabel classification
 - Helper module for downstream tasks using embeddings
 - Helper module for exploratory descriptives
 - Other bug fixes/enhancements requested by the community
Contact Information

Jason Nance
Data Scientist
RTI International
jnance@rti.org