MISSUITE: A Shiny Application for Clinical Trial Missing Data Analysis

GASP 2018
Chenguang Wang
Johns Hopkins University
Motivation
• Missing data is *ubiquitous* in clinical trials
• *Validity* of statistical analysis results are *threatened* by missing data
• Inference requires *untestable assumptions* about missing data mechanism
• Rigorous *sensitivity analyses* examining sensitivity to missing data mechanism assumptions are *crucial* and should even be mandatory
Apply *benchmark* assumptions to identify the full data model.

Consider *deviations* from the benchmark assumptions and examine the robustness.

Exploring the basics of the missing data helps to *design* the sensitivity analysis.
To develop a statistical software that is user-friendly with interactive features
To aid users to efficiently apply missing data imputation methods in existing software packages
To explore the nature of the missing data
To serve as the first step of rigorous missing data sensitivity analysis
Imputation Algorithms
• Z: treatment assignment
• $X_{1}, \ldots X_{p}$: baseline covariates
• Y_{1}, \ldots, Y_{K}: post-randomization outcomes
• $D = \{D_{1}, \ldots, D_{J}\} = \{X_{1}, \ldots, X_{p}, Y_{1}, \ldots, Y_{K}\}$: all data
• $M = \{M_{1}, \ldots, M_{J}\}$: missing data indicator
• D_{obs}: observed data
• D_{mis}: missing data
• $D_{-j} = \{D_{1}, \ldots, D_{j-1}, D_{j+1}, \ldots D_{J}\}$
• $M|D = M|D_{obs}$

• $D_{mis}|M, D_{obs} = Y_{mis}|D_{obs}$
Data Type

- Binary
- Unordered-Categorical
- Ordered-Categorical
- Continuous
 - Proportion
 - Non-Negative
Multiple imputation software packages

- **MICE**: Multivariate Imputation by Chained Equations
- **Amelia**: A Program for Missing Data
- **missForest**: Nonparametric Missing Value Imputation using Random Forest
- **Hmisc**: Harrell Miscellaneous
- **mi**: Missing Data Imputation and Model Checking
• Multiple imputation using *Fully Conditional Specification* (FCS), also known as *multiple imputation using chained equations* (MICE)

• Imputation models specified conditionally for each variable

\[
f(D_1|D_{-1}, \theta_1) \\
f(D_2|D_{-2}, \theta_2) \\
\vdots
\]

• At \(t\)th iteration

\[
\theta_j^{(t)} \sim \pi(\theta_j|D_{j,\text{obs}}, D_{-j}^{(t-1)}) \\
D_{j,\text{mis}}^{(t)} \sim f(D_j|D_{-j}^{(t-1)}, \theta_j^{(t)})
\]
• Assume $D \sim N(\mu, \Sigma)$

• Imputation by EM with bootstrapping (EMB) algorithm
 • Apply EM to find the mode of the posterior given the bootstrapped sample
 • Draw D_{mis} from $f(D_{mis}|D_{obs}, \mu, \Sigma)$

• Ordinal data are considered continuous

• Nominal data are re-coded using dummy variables that are further considered continuous
• An implementation of non-parametric random forest (RF) algorithm
• For \(j\), train an RF on the observed data \(D_{obs,j} | D_{obs,-j}\), then predict the missing values \(D_{mis,j} | D_{mis,-j}\)
• Proceed iteratively until convergence
• By averaging over trees, random forest intrinsically constitutes a multiple imputation scheme
- A multiple purpose package for data analysis, graphics, model fitting, etc.
- Provides function `aregImpute` for multiple imputation using *additive regression, bootstrapping, and predictive mean matching*
 - continuous variables: restricted cubic splines
 - categorical variables: Fisher’s optimum scoring method
 - each imputation uses a different bootstrap sample
• Also implements the *chained equation approach*
• Implements *Bayesian* imputation models such as Bayesian generalized linear models
• Provide diagnostic tools for checking the fit of the imputation models
Visualization
Software package

- **VIM**: Visualization and Imputation of Missing Values
- Different type of plots
 - Aggregation plot
 - Histogram
 - Spinogram
 - Marginal plot
 - Scatter plot
 - Jitter plot
 - Matrix plot
 - Spaghetti plot
Missuite
• RStudio product
• A web application framework for R
• Turn R code into interactive web applications
• No HTML, CSS, or JavaScript knowledge required
Architecture

Upload Data → Data Visualization → Configuration → Multiple Imputation

- MICE
- Amelia
- missForest
- Hmisc
- mi

→ Subset Selection

→ Result Visualization
ACCESS MISSUITE

• Demo on
 https://olssol.shinyapps.io/missuite/
Discussion
• Communication
• Efficiency
• Reproducible research
• Education
• IDEM
• Composite Endpoint Death Truncated Data Analysis
• Available on CRAN
• Demo on https://olssol.shinyapps.io/idem/
The End.