Introduction
Data Sources

- Divvy
- Holidays
- Weather

L

Divvy

Holidays

Weather
L Data

API accessed with RSocrata library

Ridership (by station by day)

Station Info (e.g., lat & lon)
Divvy Data

Programmatically downloaded .csv & .xlsx files from the Divvy website (https://www.divvybikes.com/system-data)

Trip Details (start location, stop location, datetime start, datetime stop, user type, etc)

Station Info (e.g., lat & lon, station "in use" date, etc.)
Holiday Data

Data scraped from https://www.officeholidays.com with rvest library

Holiday Date, Holiday Name, Comment, etc.
Weather Data

Request made on https://www.ncdc.noaa.gov/cdo-web/ and was emailed .csv files

Date, temperature max, precipitation, snow depth, etc.
Objectives

1 Week Ahead L Forecasts
(by station by day)

Compare Forecasts By Algorithm

Explore Variable Effects
Chicago Subway ("L") Ridership: Comparing Forecasting Methods

- Introduction
- Feature Engineering
- Forecast Overview
- Results
- Future Plans
Feature Engineering

44 predictor variables
(131 after one-hot encoding)
Distance

of Divvy stations with 0.5 miles of an L station

miles from an L station to the closest Divvy station
Divvy Trips

(done daily for each of the three types of customers)

trip counts

trip time stats (e.g., mean, median)
Holidays

holiday name and date
L Ridership

lags of ridership

moving averages of ridership
Time

day of the week
month
week of the month
Temperature

minimum daily temperature (in 25 F bands)
maximum daily temperature (in 25 F bands)
Forecast Overview
Procedure

caret, rsample, purrr

- Model for each station (143/6)
- Train/Valid/Test (56/24/20)
- Training uses time-slice validation (1.5/0.5/13)

- One-hot encoding
- Near zero variance
- High correlation
- Centering
- Scaling
Models

<table>
<thead>
<tr>
<th>library::model</th>
<th>variables used</th>
</tr>
</thead>
<tbody>
<tr>
<td>(caret)randomForest::randomForest</td>
<td>All (after OH, & NZV)</td>
</tr>
<tr>
<td>(caret)xgboost::xgboost</td>
<td>All (after OH, NZV, & HC)</td>
</tr>
<tr>
<td>forecast::auto.arima</td>
<td>date, rides</td>
</tr>
<tr>
<td>forecast::auto.arima</td>
<td>date, rides, fourier transformation, external regressors identified by RF & XGBTree</td>
</tr>
<tr>
<td>prophet::prophet</td>
<td>date, rides</td>
</tr>
<tr>
<td>prophet::prophet</td>
<td>date, rides, holidays</td>
</tr>
<tr>
<td>h2o::h2o.automl</td>
<td>All (after OH)</td>
</tr>
<tr>
<td>h2o::h2o.automl</td>
<td>All (after OH, NZV, & HC)</td>
</tr>
</tbody>
</table>
Comparison Criteria

Accuracy (RMSE) on validation data

Run time
Results

Extrap vs. Interp

Champion?

Variable Importance
Extrap vs. Interp

RMSE

model
arima
h2o
prophet
rf
arima_xreg
h2o_limvars
prophet Holt
xgb

start_date
Mar
Apr
May
Jun

extrapolation

interpolation
Champion?
Chicago Subway ("L") Ridership: Comparing Forecasting Methods

Introduction

Feature Engineering

Forecast Overview

Results

Future Plans
Future Plans

Keras (LSTM)
Move computation to an AWS GPU image
Expanding-window time-slice
Accuracy as MASE
Forecast & effects on Divvy ridership
Chicago Subway ("L") Ridership: Comparing Forecasting Methods

- Feature Engineering
- Results
- Forecast Overview
- Future Plans
- Introduction