
Darryl V. Creel

Stratified Simple Random Sampling: Quality Control

Darryl V. Creel, RTI International

Wednesday, October 24, 2018
Quality, Reproducibility, Rigor, Standardization, and Transparency (QR²ST). Quality is an important aspect Federal statistical information.

Quality

- : how good or bad something is
- : a characteristic or feature that someone or something has: something that can be noticed as a part of a person or thing
- : a high level of value or excellence

from www.merriam-webster.com
Planning for quality control should begin before the project starts: folder structure, naming conventions (folders, programs, functions, variables, data sets, etc.), automation, inputs/outputs, responsibilities, version control, testing, etc.

```
|----- ProjectName
|   |----- Computing
|   |----- Management
|   |----- Statistics
|   |   |----- A_Planning
|   |   |----- B_FrameDevelopment
|   |   |----- C_Sampling
|   |   |----- D_DataCollection
|   |   |----- E_DataProcessing
|   |   |   |----- EA_Weighting
|   |   |   |----- EB_Editing
|   |   |   |----- EC_Imputation
|   |   |----- F_Analysis
|   |   |----- G_Publication
|   |----- SubjectMatter
|   |----- SurveyMethodology
```
Programs in the sampling folder (C_Sampling).

```
|----- C_Sampling
| |----- Ca_stratifiedSimpleRandomSampling_selection.Rmd
| |----- Cb_stratifiedSimpleRandomSampling_qualityControl.Rmd
```
How can we increase quality (better), lower labor costs (cheaper), require less calendar time (faster), and document quality control processes?

Stratified Simple Random Sampling: Quality Control

Darryl V. Creel, RTI International

Wednesday, October 24, 2018
RStudio, an integrated development environment for R.
In a sampling stratum, the sample size should equal the sum of the probabilities of selection. For the h^th sampling stratum, the sample size, $n_{(h)}$, should equal the sum of the probabilities of selection, $p_{(hi)}$. That is, in the h^th sampling stratum, the check to ensure that the probability of selection was calculated correctly is

$$
n_{(h)} = \sum_{i=1}^{N_h} p_{(hi)}.
$$

```{r probSelSum, type = "latex", results = "asis", echo = FALSE}
```
Using the pipe, `%>%`, in R. It comes from the `magrittr` package by Stefan Milton.

```r
sampSize <- read_csv("sampleSize_01.csv") %>%
  mutate(posPop = sampSize/sampleSize/populationCount,
         dw = populationCount/sampSize$sampleSize)
```

```r
sampSize <- read_csv("sampleSize_01.csv")
sampSize$posPop <-
sampSize$sampleSize/sampSize$populationCount
sampSize$dw <-
sampSize$populationCount/sampSize$sampleSize
```
Using the pipe, `%>%`, in R. It comes from the `magrittr` package by Stefan Milton.

```r
psSumSamp <- frame %>% select(samplingStratum, probabilityOfSelection) %>% group_by(samplingStratum) %>% summarize(psSum = sum(probabilityOfSelection))

psSumSamp2 <- tapply(X = frame$probabilityOfSelection, INDEX = frame$samplingStratum, FUN = sum)*
* Not quite right does not have information when samplingStratum is missing
```
In a sampling stratum, the sample size should equal the sum of the probabilities of selection. For the \(h^{th} \) sampling stratum, the sample size, \(n_h \), should equal the sum of the probabilities of selection, \(p_{hi} \). That is, in the \(h^{th} \) sampling stratum, the check to ensure that the probability of selection was calculated correctly is

\[
\begin{align*}
n_h &= \sum_{i=1}^{N_h} p_{hi}.
\end{align*}
\]
In a sampling stratum, the sample size should equal the sum of the sample indicators. For the h^{th} sampling stratum, the sample size, n_h, should equal the sum of the sample indicators, s_{hi}. That is, in the h^{th} sampling stratum, the check to ensure that the sample indicators were calculated correctly is

\[n_h = \sum_{i=1}^{N_h} s_{hi}. \]
A tibble: 2 x 4

samplingStratum sampleSize psSum diff
<int> <int> <dbl> <dbl>
1 2 20 NA NA
2 NA NA NA 0.3 NA
How can we increase quality (better), lower labor costs (cheaper), require less calendar time (faster), and document quality control processes? RStudio and knitr.

Stratified Simple Random Sampling: Quality Control

Darryl V. Creel, RTI International

dcreel@rti.org

(301) 770-8229