Combining Data by Statistical Matching, Imputation and Modeling

Purpose for combining data

• Improve coverage
 • Survey data from different frames (e.g. landline and cell phone)
• Increase sample size
 • Meta analysis
 • Combining probability sample with nonprobability sample (improves coverage as well)
• Bring together variables from different files
 • Neighborhood Air quality measurements
Data Linkage

Entity Level (Individual Records)
 - Record Linkage (Entity Resolution)
 - Statistical Matching (Data Fusion)

Area Level (Group Statistics)
 - Direct Area Match

Entity-to-Area (Multi-level)
 - Aggregated Entity Match with Area
 - Model-based Entity from Area Distribution
Statistical Matching

- Record’s measurements are at the same level
- Little-to-no overlap of records across samples

<table>
<thead>
<tr>
<th>Sample 1</th>
<th>Sample 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_{111})</td>
<td>(x_{211})</td>
</tr>
<tr>
<td>(y_{112})</td>
<td>(x_{212})</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(y_{11q})</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(x_{111})</td>
<td>(z_{211})</td>
</tr>
<tr>
<td>(x_{121})</td>
<td>(z_{212})</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(x_{11p})</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample 2</th>
<th>Sample 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{221})</td>
<td>(y_{1n11})</td>
</tr>
<tr>
<td>(x_{222})</td>
<td>(y_{1n12})</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(x_{22p})</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(z_{221})</td>
<td>(x_{1n11})</td>
</tr>
<tr>
<td>(z_{222})</td>
<td>(x_{1n12})</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(z_{22r})</td>
<td>(x_{1n1p})</td>
</tr>
</tbody>
</table>
Combining Multiple Complex Surveys

Start: Multiple surveys where key variables are contained in many, but not all surveys

- Each survey used different designs and data collection methods, so the sampling and nonsampling error properties are different
- Cannot simply pool data for analysis

Step 1: For each survey

- Construct a model based on the sample design and the relationships in the data
- Generate synthetic populations using data from each survey

Each generated population inverts the sample design to create what is effectively a simple random sample.

Step 2: Pool data and use standard imputation approaches to fill in missing variables for the data from each survey.