

An Approach to Disclosure Limitation for Tabular Data

Daniell Toth1

1- U.S. Bureau of Labor Statistics

Content represents the opinion of the authors only.

Talk Outline

The Quarterly Census of Employment and Wages (QCEW) Current Disclosure Limitation Method

Wants and Needs

Synthetic Data Approachs

- Use in Disclosure Limitation
- Synthetic Data to Produce Tables

Data Smearing

- The Method
- Application to QCEW data

CEW

Census of Establishments

• All establishments that pay Unemployment Insurance

Total monthly employment and quarterly wages

Produces quarterly tables by industry and area

NAICS	e20101	e20102	e20103	e20104	total
Series 1	2600	2899	3022	2599	11120
Sub1	1981	2256	2382	1957	8576
Sub2	32	33	37	33	135
Sub3	587	610	603	<mark>6</mark> 09	2409

For certain industries – few establishments in any given area = suppression

NAICS	e20101	e20102	e20103	e20104	total
Series 1	2600	2899	3022	2599	11120
Sub1	1981	2256	2382	1957	8576
$\operatorname{Sub2}$		33	37	33	135
Sub3	587	610	603	<mark>6</mark> 09	2409

---- Primary suppression

The ability to publish aggregates = many secondary suppressions

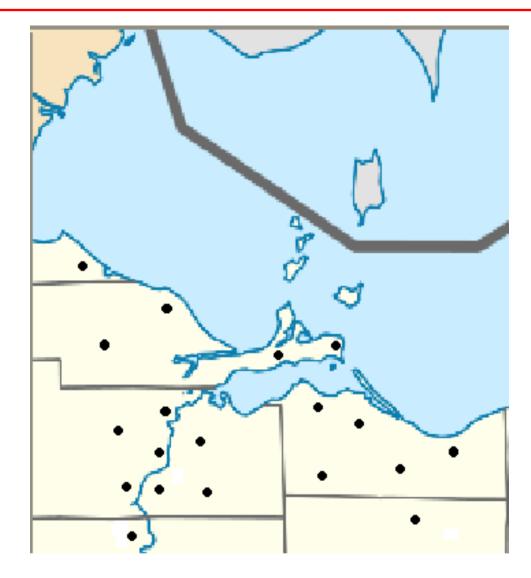
NAICS	e20101	e20102	e20103	e20104	total
Series 1	2600	2899	3022	2599	11120
Sub1	1981	2256	2382	1957	8576
Sub2		33		33	135
Sub3		610		<mark>6</mark> 09	2409

---- Primary suppression

---- Secondary suppression

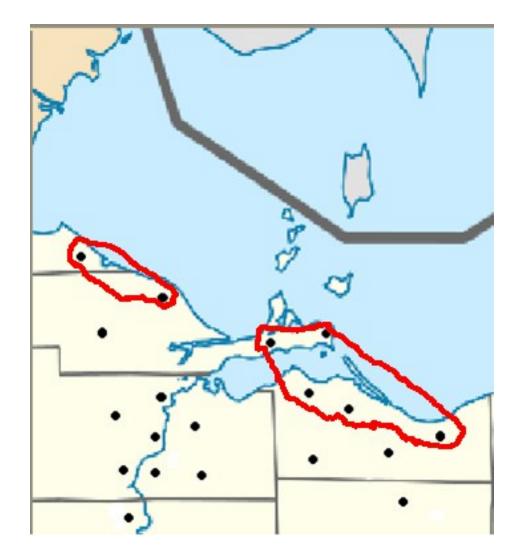
Problems and Desires

Problems:


- Way too many suppressions
- Coordinating secondary suppressions w. states
- May not protect data
 - Holan, S., Toth, D., Ferreira, M., Karr, A. (2010)

Desires:

- + Less (read no) suppressions
- + Accurate high level aggregated cells
- + Produce any requested table

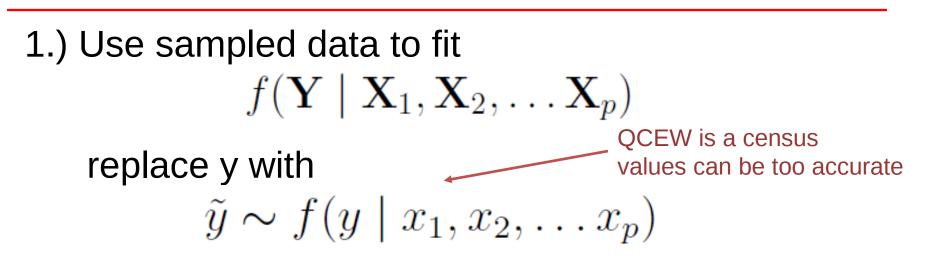

Limited Service Restaurants

Note: This example is completely fabricated. For illustration purposes only.

Region: Along the Lake

Note: This example is completely fabricated. For illustration purposes only.

Synthetic Data Approach


1.) Use sampled data to fit $f(\mathbf{Y} \mid \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_p)$

replace v with $\tilde{y} \sim f(y \mid x_1, x_2, \dots x_p)$

$$\tilde{y}_i = y_i + \epsilon_i$$

²) $\Gamma E[\epsilon_i] = 0$ and $E[\epsilon_i \epsilon_j] = 0$ $i \neq j$

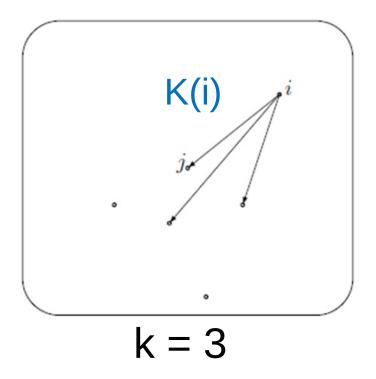
$$\begin{split} \widetilde{y_i} &= y_i + \epsilon_i \qquad \qquad \text{QCEW is highly} \\ \text{2.) Replace v with} \\ E[\epsilon_i] &= 0 \text{ and } E[\epsilon_i \epsilon_j] = 0 \quad i \neq j \qquad \qquad \text{choose noise} \\ \text{factor} \\ \end{split}$$

Data Smearing

- 1.Define distance between units based on desired domains
- 2.Find nearest-network of each unit
- 3.Synthetic value of each unit is an average of values from units in the network.
- Stach unit represents an average of itself and the surrounding units

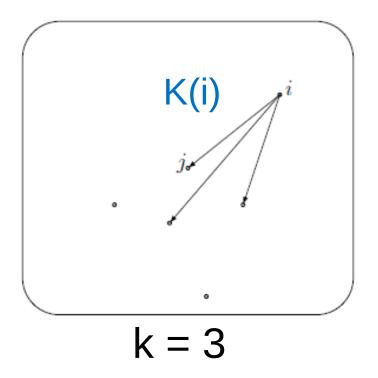
The Distance

Define a distance between units


$$d(\mathbf{u}_i, \mathbf{u}_j) = ||\mathbf{u}_i - \mathbf{u}_j||$$

Example on QCEW data :

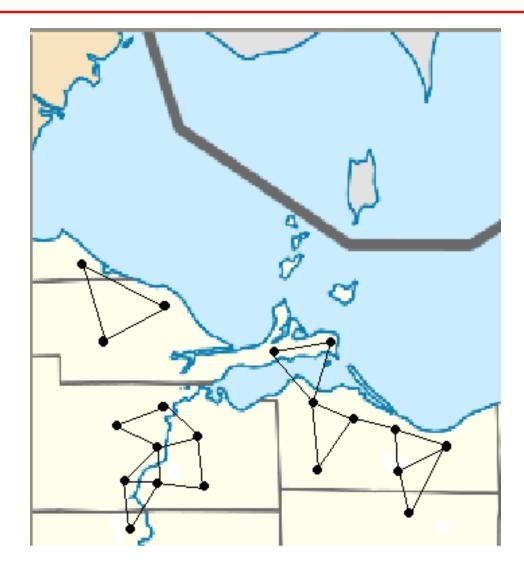
$$d(\mathbf{u}_i, \mathbf{u}_j) = geo(\mathbf{u}_i, \mathbf{u}_j) + \nu \mathbb{1}_{\{ind_{i} \neq ind_{j}\}}$$



k-Nearest Neighbor

Isolated Units

j in K(i), but unit i is no other unit's neighborhood


To make sure each unit gets spread out among other units we expand the k-nearest neighborhood

$$\overline{K(i)} = K(i) \cup \left\{ j \mid i \in K(j) \right\}$$

If unit i is in j's neighborhood than j is in i's neighborhood

Nearest Network: k=2

Note: This example is completely fabricated. For illustration purposes only.

Draw SRS without replacement of size $n \le k$ from $\overline{K(i)}$

Selected units will be used to produce synthetic values. - harder to identify which units are used to produce synthetic values

Let $\delta_j(i)$ be the indicator function (=1 if unit j is selected).

The Synthetic Values

Replace micro-data values with

$$\tilde{\mathbf{Y}}_i = w_i \mathbf{Y}_i + \sum_{j \in \overline{K(i)}} w_j \delta_j(i) \mathbf{Y}_j$$

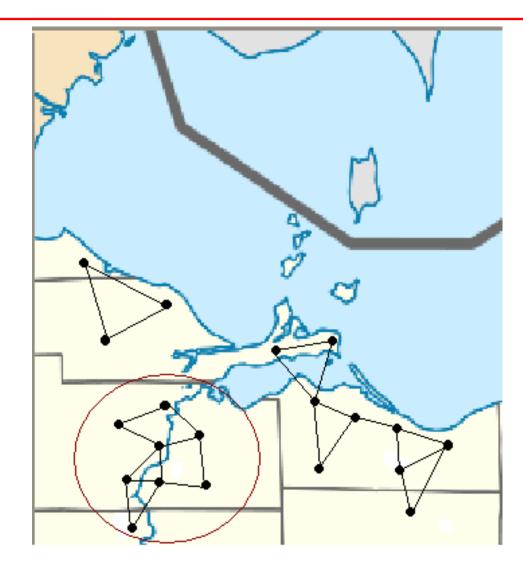
- $\delta_j(i)$ Sample indicator function for unit j
- w_i Weights to compute average

This can be repeated to produce multiple tables.

Closed Areas

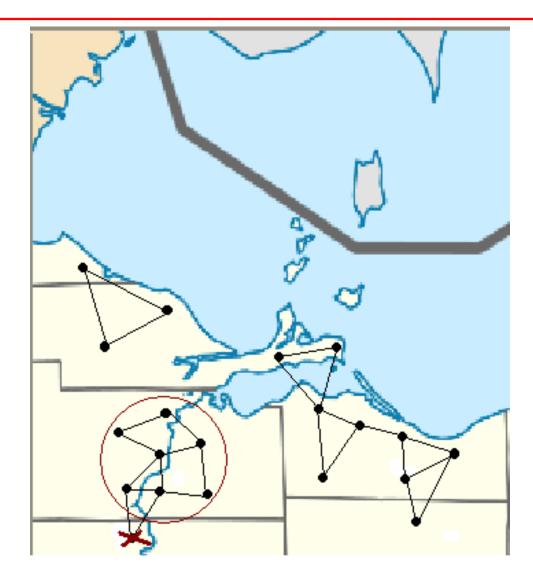
Any subset of population $C \subseteq U$ is a "closed area" if $C = \bigcup_{i \in C} \overline{K(i)}$

Closed areas contain all units contributing data to the estimate.


-easy to evaluate properties for these areas

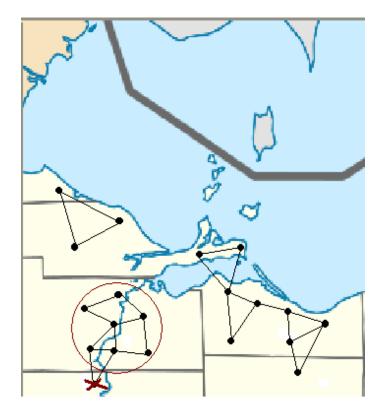
For any subset C, there exists a closed area that contains C.

Denote: \overline{C} as the smallest closed area that contains C.



Area of Interest is Closed

Smaller Area: Not Closed



Note: This example is completely fabricated. For illustration purposes only.

An Area's Boundary

Define the boundary of area ${\cal C}$

as the set $\partial(C) = \overline{C} - C$.

Lemma 2.1 If a cell C is a closed area

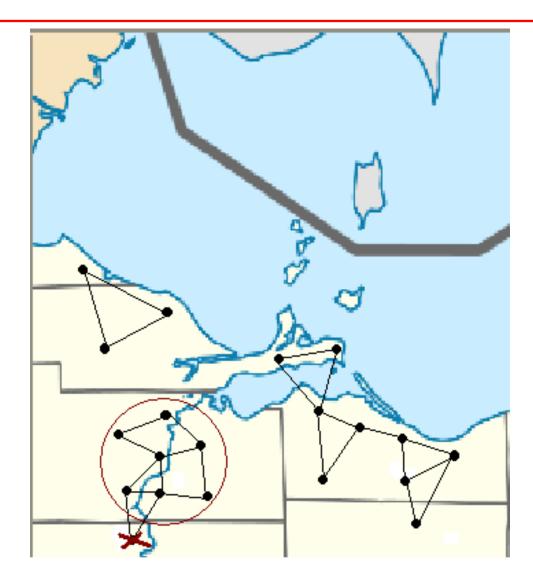
and
$$w_i = \left(1 + n \sum_{j \in \overline{K(i)}} 1/\left|\overline{K(j)}\right|\right)^{-1}$$
,

then

$$E\Big[\sum_{i\in C}\tilde{\mathbf{Y}}_i\Big] = \sum_{i\in C}\mathbf{Y}_i.$$

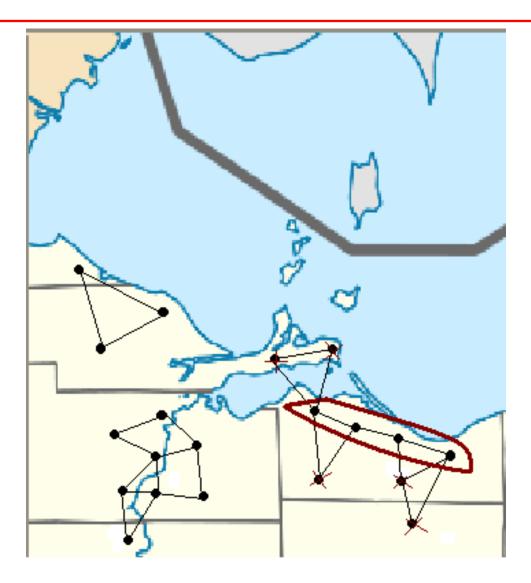
Consistent Estimates

Property 2.1 Assume $|y_i - E[\tilde{y}_i]| < M < \infty$ for all *i*.


If
$$|\partial(C)| = o\left(\sum_{i \in C} \mathbf{Y}_i\right)$$

then

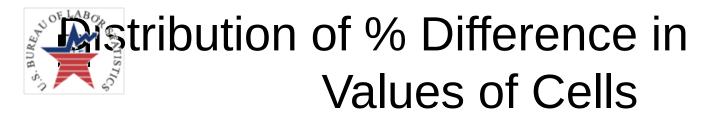
$$\lim_{|C|\to\infty} \left(\sum_{i\in C} \mathbf{Y}_i\right)^{-1} E\left[\sum_{i\in C} \tilde{\mathbf{Y}}_i\right] = 1$$


Probably OK

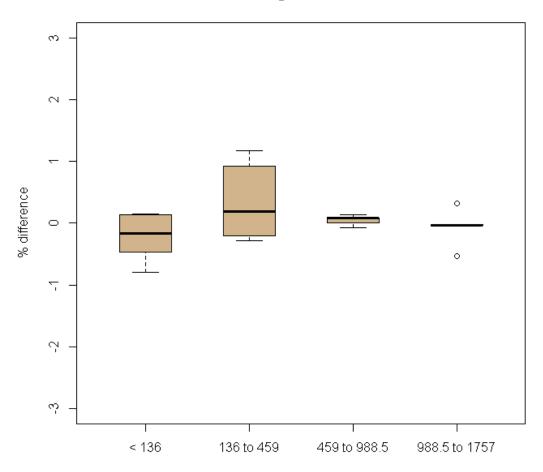
Note: This example is completely fabricated. For illustration purposes only.

Probably NOT Ok

Note: This example is completely fabricated. For illustration purposes only.



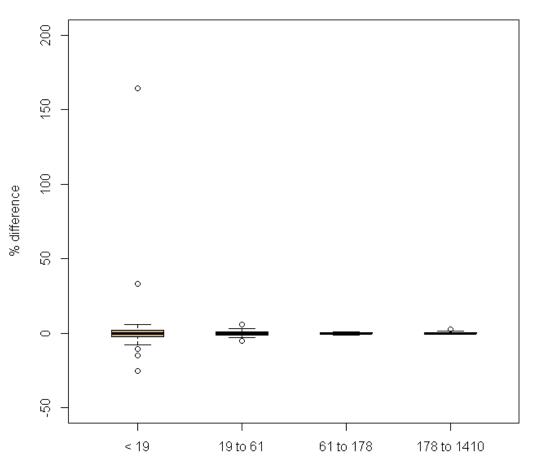
Application to QCEW Data


Industry	qrtr-1	qrtr-2	qrtr-3	qrtr-4	a-total		
Series 1	2600	2899	3022	2599	11120		
Sub1	1981	2256	2382	1957	8576		
Sub2	32	33	37	33	135		
Sub3	587	<mark>61</mark> 0	603	609	2409		
Industry	qrtr-1	qrtr-2	qrtr-3	qrtr-4	a-total		
Series 1	2572	2912	3040	2609	11133		
Sub1	1951	2273	2405	1966	8595		
Sub2	37	23	42	26	128		
Sub3	584	616	593	617	2410		

(Even Smaller Cells)

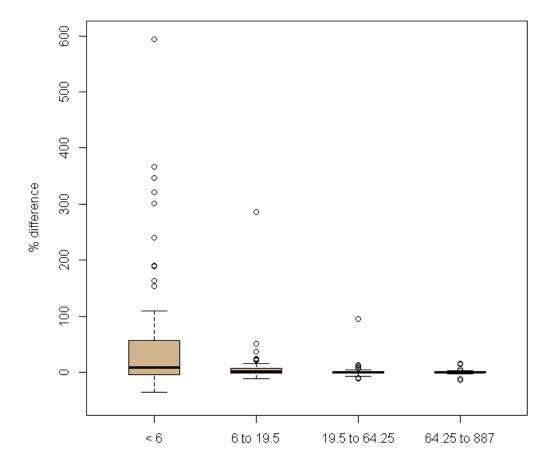
Industry	qrtr-1	qrtr-2	qrtr-3	qrtr-4	a-total		
Series 1	721	754	706	722	2903		
Sub1	573	608	566	580	2327		
Sub2	51	52	50	48	201		
Sub3	97	94	90	94	375		
Industry	qrtr-1	qrtr-2	qrtr-3	qrtr-4	a-total		
Series 1	717	732	716	722	2887		
Sub1	589	606	572	565	2332		
Sub2	27	32	51	51	161		
Sub3	101	94	93	106	394		

2-digit NAICS:

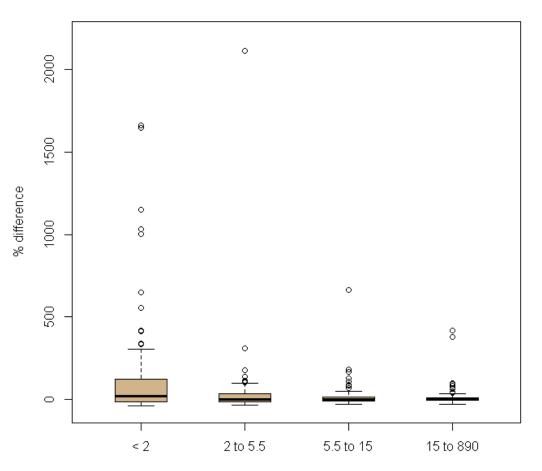


Ν

Smaller Cells


3-digit NAICS:

Even Smaller Cells


4-digit NAICS:

Cells Based on Variable not in Distance Function

County Level 2-digit NAICS:

- Allows releasing of "micro-dataset" for use in producing aggregated tables.
- Method seems to offer adequate protection to small and large establishments
- As N gets larger the cell using the synthetic data get closer to true value (relative difference).
- Accuracy of cell depends strongly on distance used.

toth.daniell@bls.gov