Bringing Statistics Education up to Data Daniel Kaplan 11/15/2019

What's in your intro stats course?

1. Inference?

- What are the settings?
 - "two sample" means and proportions?
 - slope of regression line?
 - ANOVA?
- What is the basic method?
 - Formulas and tables
 - Simulation, resampling, bootstrapping

2. Graphics?

- one variable: histogram, box-and-whisker, ...
- two variables: scatterplot, box-and-whisker, \dots
- 3. Experimental design?
- 4. Sampling bias?
- 5. Causation?
- 6. Confounding and covariates?

StatPREP.org

Faculty and teaching materials to teach statistics in a data-centric way.

Ideally ...

- make every graphic centered on data
- highlight a modern, integrated perspective:
 - not means, instead models
 - multi-variable
- feature accepted contemporary practices
 - large data (n > 50, p > 3)
 - making responsible causal claims with imperfect data
 - prediction

Realistically ...

- help instructors teach their present topics (e.g. t-tests) but with data.
- make it easier for instructors to use real data with real questions.
- help instructors embrace modern computing

Three levels of computing

- 1. Little Apps. Student facing; no programming required.
- 2. Instructor tutorials. Highly scaffolded computing. Intended mainly for instructors. (But can be used with students.)
- 3. Writing code starting with a blank page. What most of us think of when we hear "statistical computing."

All three can be done with browser-based software. (1) can potentially be done with a browser on a smart phone.

This talk will be about (1). But, short digression about ...

Instructor tutorials

- Introduce R commands
- Use a highly consistent command syntax *via* mosaic and ggformula packages. Examples:

```
gf_point(height ~ sex, data = Galton)
gf_boxplot(height ~ sex, data = Galton)
lm(height ~ sex, data = Galton)
median(height ~ sex, data = Galton)
df_stats(height ~ sex, data = Galton, coverage(0.8))
```

List of currently available StatPREP Instructor Tutorials.

Example

Calculating basic stats

Calculating Statistics ×	+													
\leftrightarrow \rightarrow C $(a$ dtkaplan.shinyapps.io/Tuto	rial_Calculating_statistics/#section-d 🛧 💽 💁 🔱 🖉 😂 🐺 🌚 🔕													
Calculating Statistics	df_stats													
df_stats	The MOSAIC df_stats() function calculates numerical summaries of a variable. It follows the usual MOSAIC template													
Groups of statistics	<pre>goal(formula, data = data_frame, additional_specifics)</pre>													
What stats are available?	The "additional_specifics" list the particular statistics you want calculated.													
Extra: Early inference	For example, here is the df_stats() command to find the mean height of the adult													
Extra: Graphing the output														
Start Over	Code I dif_stats(~ height, data = Galton, mean) 2 3													
	Note: If you want more information about the Galton data frame, you can give the command help(Galton) in the command block.													
	Using a two-sided formula causes groupwise statistics to be calculated. Try this:													
	Code 2 Shan Over 1 jdf_stats(height ~ sex, data = Galton, mean) 2 3													
	Next Topic													

Structure of a Little App

Do I just need something here?

- 1. Center display is data
 - a. both axes are variables
 - b. each unit of observation is shown
- 2. Data. Currently, several "large" data sets, e.g.
 - a. National Health and Nutrition Evaluation Survey (NHANES)
 - 10,000 rows
 - 76 variables, including biological, lifestyle, economic indicators (height, age, urine flow, alcohol consumption, smoking, depression, education, income, ...)
 - b. Births in the US
 - 100,000 births
 - 45 variables including baby weight, mother age, gestation length, AP-GAR, labor induced, ...
- 3. Operation.
 - Student picks a response variable and an explanatory variable.
 - Optionally picks a covariate
 - Student picks sample size
 - New sample at the push of a button

- 4. Statistical annotations. Statistics are shown as annotations on the data.
 - point statistics and regression curves
 - confidence intervals and bands
 - densities
- 5. Inference:
 - Can see variation when generating a new sample
 - Some apps involve bootstrapping directly
 - Student can vary sample size and see consequences directly.
- 6. Statistical tabulation (in a tab)

A suggested pedagogy

- 1. Introduce data: numerical and categorical variables, response and explanatory variables, scatter plot, jittering, sample size. (No stats yet.)
- 2. Look for patterns and give simple description and interpretation. (No inference yet.)
- 3. Introduce covariates. Does the inclusion of a covariate change the observed pattern? Does it change the story? (This could be later.)
- 4. Introduce formal ways to describe patterns: means, proportions, regression models, ... (No inference yet.)
- 5. Using small data, raise question of whether the pattern is really there. Do this by observing sampling variation directly. (Press "New Sample".)
- 6. Change sample size and observe how pattern variation changes.
- 7. Introduce formal measures of sampling variation in observed patterns.
- 8. Introduce formal mechanism for inferring sampling variation from a single, fixed sample.

Examples: Plain graphics

Contrasting apps

Dan Adrians Happy Apps

Example: t-test

Example: Explaining variation

Summary and discussion

Data can be at the center of your statistics course.

Computing and an associated pedagogy are available.

extra stuff

Finding your own data ...

Capital Bikeshare

	U	110	01 01	0.000		apric	mark(0)	p110	^	-1"																	
\rightarrow	C		\$3.	ama	zon	aws.	com,	/cap	ital	bikes	hare	e-da	ta/ii	nde		☆	۲.	%	Q	1		ø	2	÷	0)	0
	20	190	3-c	apit	albil	kesh	are-	trip	dat	a.zip	A	٩pr	15tl	n 20	19,	01:3	37:09	9 pm		5.86	5 N	1B	ZIP	file			
	20	190	4-c	apit	albil	kesh	are-	trip	dat	a.zip	N	Иау	6th	201	9,	02:0	8:08	pm		8.01	N	1B	ZIP	file			
	20	190	5-c	apit	albil	kesh	are-	trip	dat	a.zip		Jun	11t	h 20	19,	02:	36:1:	2 pm		7.84	N	1B	ZIP	file			
	20	190	6-c	apit	albil	kesh	are-	trip	dat	a.zip		Jul 1	5th	201	9,	12:5	5:20	pm		8.15	δN	1B	ZIP	file			
	20	190	7-c	apit	albil	kesh	are-	trip	dat	a.zip	A	Aug	5th	201	9, (04:3	4:42	pm		8.29	N	1B	ZIP	file			
	20	190	8-c	apit	albil	kesh	are-	trip	dat	a.zip	5	Sep	18t	h 20	19,	03:	35:1	0 pr	ı	8.40	N	1B	ZIP	file			
	20	190	9-c	apit	albil	kesh	are-	trip	dat	a.zip	(Dct	11t	h 20	19,	02:4	10:4	5 pm		8.41	N	1B	ZIP	file			
	20	191	0-c	apit	albil	kesh	are-	trip	dat	a.zip	١	Vov	5th	201	9, (04:0	4:50	pm		7.86	5 N	1B	ZIP	file			
	inc	lex.	htm	1							[Dec	10t	h 20	15,	02:	07:1	0 pr	1	6 KI	3		HT	ML fi	le		

October 2019

Duration	Start date	End date	Start station number	Start station	End stat
429	2019-10-01 00:01:59	2019-10-01 00:09:08	31214	17th & Corcoran St NW	
1935	2019-10-01 00:03:07	2019-10-01 00:35:23	31269	3rd St & Pennsylvania Ave SE	
563	2019-10-01 00:03:51	2019-10-01 00:13:14	31214	17th & Corcoran St NW	

... and so on for 337,552 rows altogether.

CapitalBikeshare questions

- How many bikes are there? Ans: 4699
- How many are in use at each time? What might this depend on?
- What's a long trip? Are long trips more common at some times than others?

Why does the plot have this shape? How would you check your hypothesis?

Are tests what we want?

Scores on SAT Math test by sex

t-test: Emphasizes differences, not similarities

```
##
    Welch Two Sample t-test
##
##
## data: score by sex
## t = -12.476, df = 19826, p-value < 2.2e-16</pre>
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
    -22.64338 -16.49449
##
## sample estimates:
## mean in group female
                          mean in group male
##
               498.8845
                                     518.4535
```

What does the p-value tell you, really?

Box-and-whiskers plot

Show individuals!

What's the take-home impression here?

