A Tour of USDA NASS's Decision Support System

Nathan B. Cruze, Clyde Fraisse*, Ana Wagner*, Habtamu Benecha, Noemi Guindin

United States Department of Agriculture National Agricultural Statistics Service (NASS)

*University of Florida
Department of Agricultural and Biological Engineering

Government Advances in Statistical Programming Workshop Washington, DC–September 23, 2019

Outline and Disclaimer

- 1. Motivating need for Decision Support System (DSS)
 - ▶ Relevant, timely, consolidation of multiple data sources
 - ▶ National Academies of Sciences, Engineering, and Medicine (2017a,b,c, 2019)
- 2. Project origins, open source software, and public data inputs
- 3. Added value for National Agricultural Statistics Service (NASS) estimation programs

Disclaimer: The findings and conclusions of this presentation are those of the authors and should not be construed to represent any official USDA or U.S. Government determination or policy.

This research was supported in part by the intramural research program of the U.S. Department of Agriculture, National Agriculture Statistics Service.

Mother Nature Does **NOT** Respect Due Dates!

Hurricane season 2017: Harvey (August 25), Irma (September 10)

Crop Production

ISSN: 1936-3737

Released September 12, 2017, by the National Agricultural Statistics Service (NASS), Agricultural Statistics Board, United States Department of Agriculture (USDA).

Special Note

Hurricane Harvey made landfall on Friday, August 25 near Rockport, Texas. The resulting rainfall caused flooding in parts of southersenter Texas and southwestern Louisianan. As a result, data collection activities for the September Crop Production report were impacted in these areas and the full impact of this weather event may not be fully reflected in this report. Therefore, NASS will collect harvested acreage information in both Texas and Louisiana for a number of crops in preparation for the October Crop Production report. Harvested acreage information will be collected from all producers surveyed in Louisiana for corn, Upland cotton, rice, sorghum, and soybeans.

Hurricane Irma made landfall on Sunday, September 10. NASS will also collect harvested acreage information in preparation for the October Crop Production report in Alabama, Florida, Georgia, and South Carolina. Harvested acreage will be collected in these four States from all producers surveyed for Upland cotton, peanuts, and soybeans.

Corn Production Up Less Than 1 Percent from August Forecast Soybean Production Up 1 Percent Cotton Production Up 6 Percent

Figure: September 2017 Crop Production Report

"To be...

		Acres		1	
10. Ac	cres left to be pla	nted	610	610	
Acres irrigated and to be irrigated [If double cropped, include acreage of each crop irrigated.]			620	620	
16. v	(include cover crop)	Planted	540	540	
17. (i		For grain or seed	541	541	
20. c	Oats (include cover crop)	Planted and to be planted	533	533	
21.		For grain or seed	534	534	
	Corn [exclude popcorn	Planted and to be planted	530	530	
	and sweet corn]	For grain or seed	531	531	
	Other uses of grains planted	Use			
	Abandoned, silage, green chop, etc.)	Acres			
30.	Hay [Cut and to be cut for dry hay.]	Alfalfa and Alfalfa Mixtures	653	653	
31 [Grain	656	656	
33.		Other Hay			
34.	Plante	ed and to be planted	600	600	
35.	Soybeans Followi	ing another harvested crop	602	602	
81. C	Other crops	Acres planted or in use	848	848	

- ▶ June Area Survey
- Example Ohio instrument
- ▶ June 1 reference date
- ► Two-week data collection
- Respondents also report intentions ('to be')
- Acreage report published June 28, 2019

Intentions may change...

...or not to be"

Heavy rains impacted subsequent planting activity

- User interest in planted area totals published June 28, 2019
- Announced re-contact efforts¹ with release of Acreage report

	Corn			Soybeans		
State	2018 Final (1,000 Acres)	2019 June ² (% Change)	2019 August ³ (% Change)	2018 Final (1,000 Acres)	2019 June ² (% Change)	2019 August ³ (% Change)
Illinois	11,000	0%	-3%	10,800	-5%	-7%
Indiana	5,350	3%	-5%	5,950	-11%	-9%
Kansas	5,450	8%	17%	4,750	-1%	-3%
Michigan	2,300	0%	-13%	2,300	-9%	-24%
Missourri	3,500	-3%	-7%	5,850	-9%	-13%
Ohio	3,500	-6%	-20%	5,000	-6%	-16%
South Dakota	5,300	-9%	-15%	5,650	-22%	-38%

References and Data-Accessed September 15, 2019

- (1) Reference: June 28, 2019 USDA NASS Agricultural Statistics Board Notice
- (2) Reference: American Farm Bureau Federation-Groundtruthing USDA's June Acreage Report
- (3) Author calculations based on Corn Data and Soybean Data in NASS August 2019 Crop Production

Mother Nature Controls Key Factors of Crop Production

Anecdotes provided by state Farm Bureau agents:

- ▶ Illinois—"prevented-planting of corn...planting soybeans"
- ▶ Michigan—"corn...will go to silage, not grain"
- ➤ Ohio-"[crops are] behind, struggling...in need of replant"
- ▶ Indiana—"Anticipated yields…less than the 10-year average"
- Kansas—"...will require near optimal temperatures and...precipitation...an earlier than normal frost could be devastating"

Economic decisions, progress, condition, trend yield, and phenology

University of Florida/NASS Collaboration

AgroClimate Tools

- Origins with Southeast Climate Consortium (SECC)
- Currently managed by University of Florida
- Decision tools for farmers

Collaboration to customize tools for NASS internal use

- ▶ Nebraska pilot began in 2015
- Nationwide expansion summer 2017

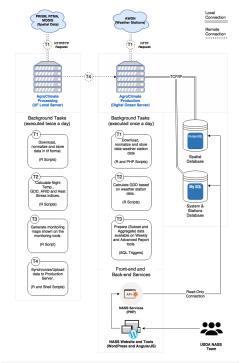
Public Data Inputs and Software

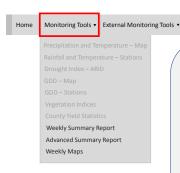
Statistics in DSS derived from NASS data and these inputs:

- 1. Oregon State University PRISM Climate Data
- NOAA National Centers for Environmental Prediction Real-Time Mesoscale Analysis (RTMA) Data
- 3. USDA Natural Resources Conservation Service Soil Survey Geographic Database (SSURGO)

Free or open-source software underpinnings:

- MySQL and PostgreSQL with required PostGIS 2.4.5 extension
- Apache Server, PHP, WordPress
- R v3.4.3: reshape, reshape2, ggplot2, rJava, zoo, stringr, sp, RPostgreSQL, RMySQL, rgdal, RCurl, raster, plyr, ncdf4, maptools, mailR, Jsonlite, RJSONIO, doMC, compare, foreach, AgroClimate




DSS Structure

Browser-based, menu-driven

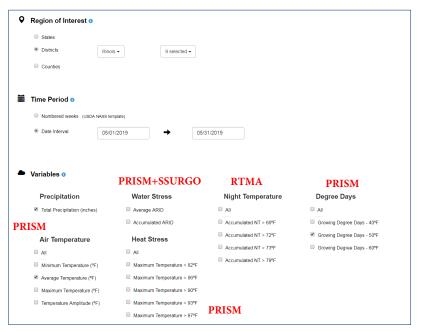
- Intuitive, user-friendly
- Read-only connection
- Spatial and systems databases
- R scripts derive and aggregate statistics
- Curated data matched to NASS deliverables
- Visualize, summarize, export

Monitoring Capabilities

The Weekly and Advanced Summary Report Tools summarize weather and climate information at the county, district and state level and are customized to match the time-frame for NASS's Weekly Crop Progress and Condition Reports.

ENSO ▼

Contact


Log Out

Forecasts & Outlooks *

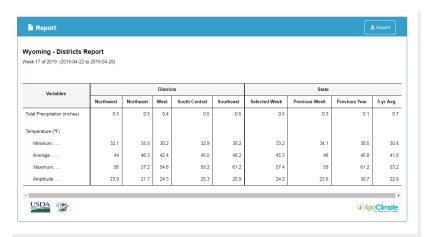
The Weekly Map Tool displays variables at State and Regional Field Office level. The summary of the weather information - for the week ending on Sunday - is available every Monday morning at 9:00 am EST.

Menu for Summary Reports: Derived Statistics

Field Office Review and Weekly Reports

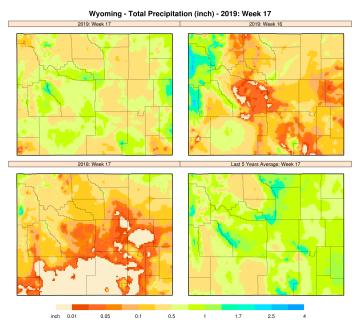
Compare/contrast April 29, 2019 Crop Progress and Condition

Features	Wyoming	Illinois	
Weekly Narrative	Χ	Χ	
Crop/Livestock Progress	X	Χ	
Crop/Livestock Condition	X	Χ	
# Days for Fieldwork	X	Χ	
Soil Moisture	X	Χ	
State/District Weather		Χ	
Weather Maps		Χ	

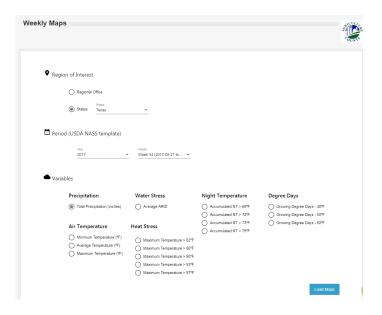

Opportunities: standardize, provide additional useful data

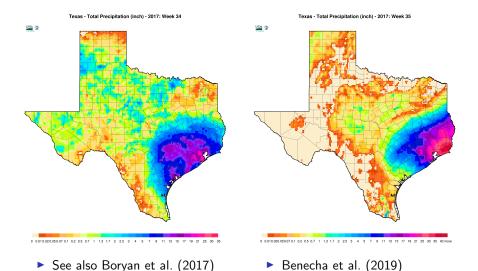
Link: Wyoming Crop Progress for April 29

Link: Illinois Crop Progress for April 29

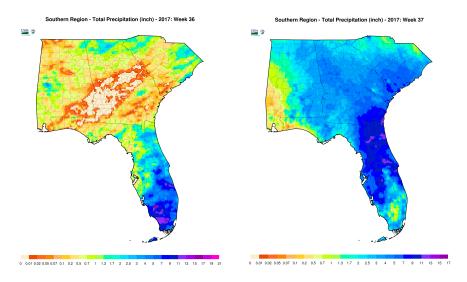


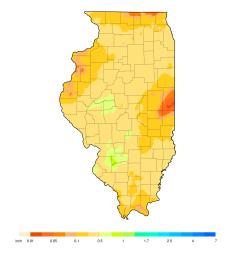
Wyoming District Weather: April 22-April 28, 2019

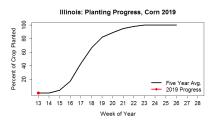



Wyoming Weather Map: April 22-April 28, 2019

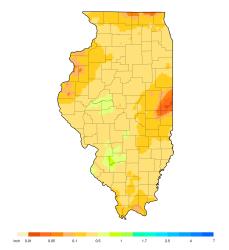
Weekly Map Menu-Exporting Texas Precipitation

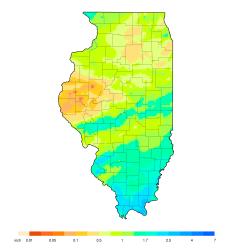

Texas Precipitation: August 21-September 3, 2017

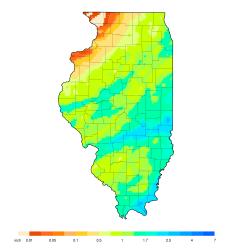


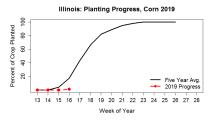


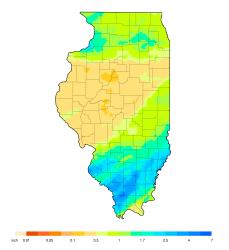
Southern Region Precipitation: September 4-17, 2017

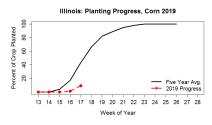

► See also Hurricane Irma: NASS Flood Assessment Report

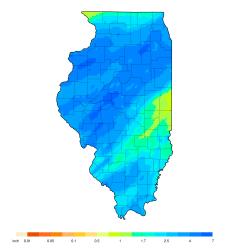


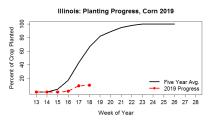


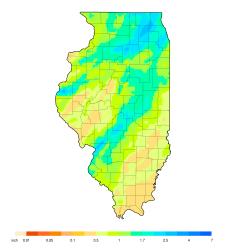


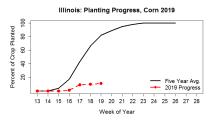


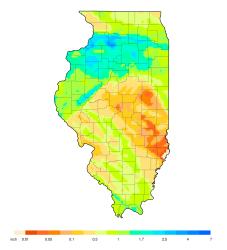




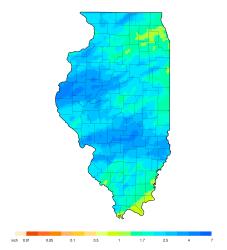


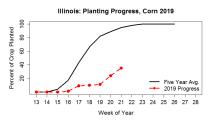


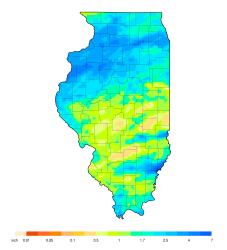


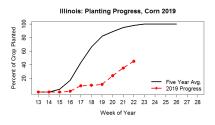




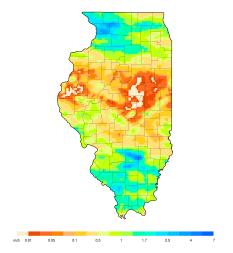




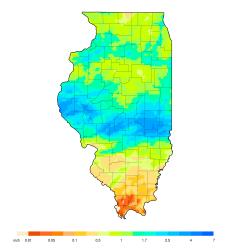


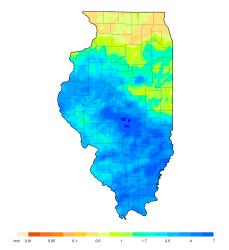


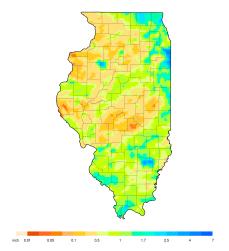


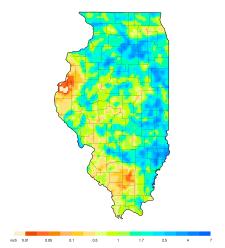


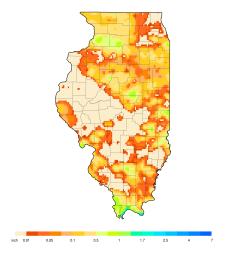




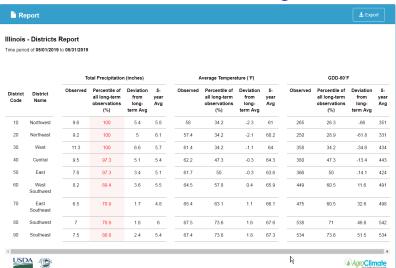




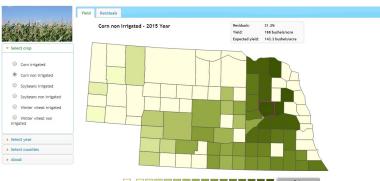




Illinois - Total Precipitation (inch) - 2019; Week 28



Illinois 2019: Corn and Soybeans Planted Progress Data


Planned Extensions: Alerts and Modeling



Trend: Platte County, Non-Irrigated Corn Yield, 2015

Planned Extensions: Crop Simulation Modeling

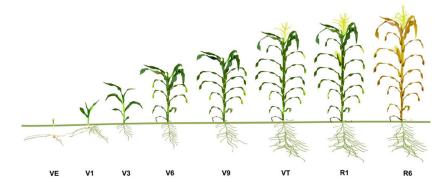


Figure: Image Source-Pioneer Agronomy Sciences

- ▶ Simulate progress as functions of weather, soil, management
- Crop phenology and health of crop at critical points in time

Linking to External Monitoring Tools from One Dashboard

- ► NASS Cropland Data Layer
- ► UNL U.S. Drought Monitor
- NWS Climate Prediction
 Center ENSO Diagnostics

- ► NOAA NWS National Hurricane Center
- ► UNL High Plains Regional Climate Center

Conclusions

The DSS provides timely and relevant auxiliary data

- Tailored for internal use at NASS
- Offered first to field offices for use in routine duties.
- 3. Standardization of *Crop Progress and Condition* reports
- 4. Weather data complements and augments other approaches
 - Survey data
 - Administrative data
 - Remote sensing of disasters
 - Modeling
- 5. Planned enhancements coming soon

Additional References

- Benecha, H., Sartore, L., and Cruze, N. (2019). Model-Based Crop Yield Forecasting: Covariate Selection and Related Issues. In Proceedings of the Joint Statistical Meetings, Survey Research Methods Section. American Statistical Association, Alexandria, VA. To Appear.
- Boryan, C., Yang, Z., Sandborn, A., Willis, P., and Haack, B. (2017). Operational Agricultural Flood Monitoring With Sentinel-1 Synthetic Aperture Radar.
 - $\label{limits} $$ $ \true = \frac{1}{N} \frac{1}{$
- National Academies of Sciences, Engineering, and Medicine (2017a). Federal Statistics, Multiple Data Sources, and Privacy Protection: Next Steps. The National Academies Press, Washington, DC.
- National Academies of Sciences, Engineering, and Medicine (2017b). Improving Crop Estimates by Integrating Multiple Data Sources. The National Academies Press, Washington, DC.
- National Academies of Sciences, Engineering, and Medicine (2017c). Innovations in Federal Statistics: Combining Data Sources While Protecting Privacy. The National Academies Press, Washington, DC.
- National Academies of Sciences, Engineering, and Medicine (2019). Methods to Foster Transparency and Reproducibility of Federal Statistics: Proceedings of a Workshop. The National Academies Press, Washington, D.C.

