Stratified Simple Random Sampling: Quality Control

Darryl V. Creel, RTI International

October 24, 2018

```
## -- Attaching packages ------ tidyve
## v ggplot2 3.0.0
               v purrr
                      0.2.5
## v tibble 1.4.2
               v dplyr
                      0.7.6
## v tidyr
        0.8.1
               v stringr 1.3.1
## v readr
        1.1.1
               v forcats 0.3.0
## -- Conflicts ------ tidyverse_co
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
              masks stats::lag()
```

Outline

Quality control at each each stage in the process.

- 1. Sampling Frame
- 2. Sample Size Data Set
- 3. Check Sampling Strata Across the Sampling Frame and Sample Size Data Set
- 4. Probability of Selection
- 5. Sample Indicator
- 6. Design Weight
- 7. Sample Selection Summary
- 8. Session Information
- 9. References

For this study, the sampling unit is the physician.

1. Sampling Frame

At the time of sampling, the frame consists of eligible sampling units.

```
## Parsed with column specification:
## cols(
##
    id = col_integer(),
##
    samplingStratum = col_integer(),
##
    probabilityOfSelection = col_double(),
    sampleIndicator = col_integer(),
##
##
    designWeight = col_double()
## )
## Classes 'tbl_df', 'tbl' and 'data.frame': 1200 obs. of 5 variables:
## $ id
                      : int 1233 NA 67899...
## $ samplingStratum
                      : int 1 1 1 1 1 1 1 NA NA 1 ...
## $ sampleIndicator
                      : int 0111111111...
## $ designWeight
                      : num 6 6.67 6.67 6.67 6.67 ...
## - attr(*, "spec")=List of 2
```

```
##
    ..$ cols :List of 5
    .. ..$ id
##
                                : list()
    ....attr(*, "class")= chr "collector_integer" "collector"
##
##
    ....$ samplingStratum
                               : list()
##
    ....- attr(*, "class")= chr "collector_integer" "collector"
##
    ....$ probabilityOfSelection: list()
##
    ....- attr(*, "class")= chr "collector_double" "collector"
                            : list()
##
    ....$ sampleIndicator
    ....- attr(*, "class")= chr "collector_integer" "collector"
##
##
    .. ..$ designWeight
                               : list()
##
    .. .. - attr(*, "class")= chr "collector_double" "collector"
##
    ..$ default: list()
    ....- attr(*, "class")= chr "collector_guess" "collector"
##
    ..- attr(*, "class")= chr "col_spec"
##
```

1.1. Check for Missing IDs

Fail: Missing identifier value.
[1] 3

1.2. Check for Duplicate IDs

Fail: Duplicate unique identifier.

Table 1: F	rame	Du	plicate IDs
	id	n	-
	3	2	-
	9	3	
		3	

1.3. Check for Missing Stratification Values

Fail: Missing sampling stratum value.
[1] 2

2. Sample Size Data Set

```
## Parsed with column specification:
## cols(
## samplingStratum = col_integer(),
## populationCount = col_integer(),
## sampleSize = col_integer()
## )
## Classes 'tbl_df', 'tbl' and 'data.frame': 4 obs. of 5 variables:
## $ samplingStratum: int 1 2 3 4
## $ populationCount: int 100 200 300 600
## $ sampleSize : int 15 20 25 100
## $ posPop : num 0.15 0.1 0.0833 0.1667
```

\$ dw : num 6.67 10 12 6

Pass: All observations have a value for the sampling stratum.

2.1. Check for Duplicate Strata

Pass: All observations have a unique sampling stratum value.

2.2. Check for Strata with Sample Size Less Than Two

Pass: All sampling strata have at least two sampling units.

3. Check Sampling Strata Across the Sampling Frame and Sample Size Data Set

Fail: At least one samling stratum does not have the expected number of sampling units.

Table 2	Sampling Stratum	Does Not Have Ex	pected Number	of Sampling Units
-	$\operatorname{samplingStratum}$	populationCount	frameCount	countDiff
	1	100	98	2.00

 $\mathbf{2}$

4. Probability of Selection

4.1. Check Probability of Selection Values

In a sampling stratum, all sampling uints should have the same probability of selection.

Fail: At least one samling stratum does not have all the sampling units with the same value for the probability of selection.

Table 3:	Probabilities of Selec	tion Do N	lot Have	the Same	e Value
	samplingStratum	posPop	psVal	diff	
	2	0.10			
			0.15		

4.2. Check Sum of Probabilities of Selection

In a sampling stratum, the sample size should equal the sum of the probabilities of selection. For the h^{th} sampling stratum, the sample size, n_h , should equal the sum of the probabilities of selection, p_{hi} . That is, in the h^{th} sampling stratum, the check to ensure that the probability of selection was calculated correctly is

$$n_h = \sum_{i=1}^{N_h} p_{hi}.$$

Fail: At least one samling stratum does not have the sum of the probabilities of selection equal to the sample size.

Table 4: Sum Probabilites	of Selection	not Equal	Sample Size
samplingStratum	sampleSize	psSum	diff
2	20		
		0.30	

5. Sample Indicator

In a sampling stratum, the sample size should equal the sum of the sample indicators. For the h^{th} sampling stratum, the sample size, n_h , should equal the sum of the sample indicators, s_{hi} . That is, in the h^{th} sampling stratum, the check to ensure that the sample indicators were calculated correctly is

$$n_h = \sum_{i=1}^{N_h} s_{hi}.$$

Fail: At least one samling stratum does not have the sum of the sample indicators equal to the sample size.

Lai	se s. sum sample.	mulcators not	Equal S	ampie s	IZ
	samplingStratum	sampleSize	siSum	diff	
	1	15	12	-3.00	
	2	20			
	4	100	101	1.00	
			2		

Table 5: Sum Sample Indicators not Equal Sample Size

6. Design Weight

6.1. Check Design Weight Values

In a sampling stratum, all the sampled sampling units should have the same design weight, and all non-sampled sampling units should have a design weight of zero.

Fail: At least one samling stratum, when the design weight is greater than zero, does not have all the sampling units with the same value for the design weight.

Table 6	: Design '	Weights	Do	Not	Have	the	Same	Value
-	sampling	gStratun	n	dw	dwV	al	diff	
-					6.6	67		

6.2. Check Sum of the Design Weights

In a sampling stratum, the population count should equal the sum of the design weights. For the h^{th} sampling stratum, the population count, N_h , should equal the sum of the design weights, d_{hi} . That is, in the h^{th} sampling stratum, the check to ensure that the design weights were calculated correctly is

$$N_h = \sum_{i=1}^{N_h} d_{hi}.$$

Fail: At least one samling stratum does not have the sum of the design weights equal to the population size.

Table 7: Sum Design Weights not Equal Populat						
samplingStratum	populationCount	dwSum	diff			
1	100	86.00	-14.00			
2	200					
4	600	606.00	6.00			
		13.33				

7. Quality Control Summary

Fail: At least one samling stratum does not have all the sampling units with the same value for the ## Fail: At least one samling stratum does not have the sum of the probabilities of selection equal to ## Fail: At least one samling stratum does not have the sum of the sample indicators equal to the sampl ## Fail: At least one samling stratum, when the design weight is greater than zero, does not have all t ## Fail: At least one samling stratum does not have the sum of the design weights equal to the populati

samplingStratum	samplingStratum populationCount sampleSize probabilityOfSelection sampleIndicator designWeight							
1	100	15	0.15	0	0.00	$\frac{n}{85}$		
1	100		0.15	0	6.67	12^{00}		
1		15		1		12		
1	100	15	0.25	0	6.00	1		
2	200	20	0.10	0	0.00	180		
2	200	20	0.10	1	10.00	17		
2	200	20	0.10	1		1		
2	200	20	0.10		10.00	1		
2	200	20		1	10.00	1		
3	300	25	0.08	0	0.00	275		
3	300	25	0.08	1	12.00	25		
4	600	100	0.17	0	0.00	499		
4	600	100	0.17	1	6.00	101		
			0.15	1	6.67	2		

 Table 8: Sampling Summary Table

8. Table, Document, and Session Information

The tables in this document were created using the xtable package (Dahl et al. 2018). This package was used in the R language and environment for statistical computing (R Core Team 2018). This document was created using the knitr package (Xie 2018) in RStudio (RStudio).

Session information:

```
## R version 3.5.1 (2018-07-02)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
```

```
## Running under: Windows 7 x64 (build 7601) Service Pack 1
##
## Matrix products: default
##
## locale:
## [1] LC COLLATE=English United States.1252
## [2] LC CTYPE=English United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC NUMERIC=C
  [5] LC_TIME=English_United States.1252
##
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                                datasets methods
                                                                    base
##
## other attached packages:
##
    [1] bindrcpp_0.2.2
                        xtable_1.8-3
                                         forcats_0.3.0
                                                         stringr_1.3.1
   [5] dplyr_0.7.6
                                                         tidyr_0.8.1
##
                        purrr_0.2.5
                                         readr_1.1.1
##
   [9] tibble_1.4.2
                        ggplot2_3.0.0
                                         tidyverse_1.2.1
##
## loaded via a namespace (and not attached):
##
   [1] Rcpp_0.12.19
                         cellranger_1.1.0 pillar_1.3.0
                                                            compiler_3.5.1
   [5] plyr_1.8.4
                         bindr_0.1.1
                                           tools 3.5.1
                                                            digest_0.6.18
##
                         jsonlite_1.5
##
  [9] lubridate_1.7.4
                                           evaluate_0.12
                                                            nlme_3.1-137
## [13] gtable_0.2.0
                         lattice 0.20-35
                                           pkgconfig_2.0.2
                                                            rlang_0.2.2
## [17] cli_1.0.1
                         rstudioapi_0.8
                                           yam1_2.2.0
                                                            haven_1.1.2
## [21] withr_2.1.2
                         xml2_1.2.0
                                           httr_1.3.1
                                                            knitr 1.20
## [25] hms_0.4.2
                         rprojroot_1.3-2
                                           grid_3.5.1
                                                            tidyselect_0.2.5
## [29] glue_1.3.0
                         R6_2.3.0
                                           readxl_1.1.0
                                                            rmarkdown_1.10
## [33] modelr_0.1.2
                         magrittr_1.5
                                           backports_1.1.2
                                                            scales_1.0.0
## [37] htmltools_0.3.6
                         rvest_0.3.2
                                           assertthat_0.2.0 colorspace_1.3-2
## [41] stringi_1.1.7
                         lazyeval_0.2.1
                                           munsell_0.5.0
                                                            broom_0.5.0
## [45] crayon_1.3.4
```

9. References

Dahl, David B., David Scott, Charles Roosen, Arni Magnusson, and Jonathan Swinton. 2018. Xtable: Export Tables to Latex or Html. https://CRAN.R-project.org/package=xtable.

R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Xie, Yihui. 2018. Knitr: A General-Purpose Package for Dynamic Report Generation in R. https://CRAN. R-project.org/package=knitr.