# Model Selection and Its Important Roles in Surveys 

Jiming Jiang<br>University of California, Davis, USA

Nov. 14, 2023, Washington, D.C.

The 2023 Morris Hansen Lecture

## Outline

(1) Introduction
(2) Statistical modeling in surveys
(3) Model selection
(4) Example
(5) Discussion
(6) References

## 1. Introduction

- The 21st Century has seen a flourish of statistical data science.


## 1. Introduction

- The 21st Century has seen a flourish of statistical data science.
- This is driven by an unprecedented capability of collecting data, or information.


## 1. Introduction

- The 21st Century has seen a flourish of statistical data science.
- This is driven by an unprecedented capability of collecting data, or information.
- Sometimes, there is too much "information";


## 1. Introduction

- The 21st Century has seen a flourish of statistical data science.
- This is driven by an unprecedented capability of collecting data, or information.
- Sometimes, there is too much "information";
- yet, in some other cases, there is (still) not enough.
${ }^{\square}$ Nov. 14, 2023, Washington, D.


## 1. Introduction

- The 21st Century has seen a flourish of statistical data science.
- This is driven by an unprecedented capability of collecting data, or information.
- Sometimes, there is too much "information";
- yet, in some other cases, there is (still) not enough.
- In any cases, especially in the latter, the idea of "borrowing strength" comes along.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- The term was originated from Tukey back in the 1960s.
- The term was originated from Tukey back in the 1960s.
- An ancient story from "Three kingdoms" (220-280 AD)
- The term was originated from Tukey back in the 1960s.
- An ancient story from "Three kingdoms" (220-280 AD)
- A "modern" story: IQ test (hypothetical; Mood et al. 1974, 370)

Nov. 14, 2023, Washington, D.

- The term was originated from Tukey back in the 1960s.
- An ancient story from "Three kingdoms" (220-280 AD)
- A "modern" story: IQ test (hypothetical; Mood et al. 1974, 370)
- Suppose the IQ of students in a particular age group are normally distributed with mean 100 and s.d. 15.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- The term was originated from Tukey back in the 1960s.
- An ancient story from "Three kingdoms" (220-280 AD)
- A "modern" story: IQ test (hypothetical; Mood et al. 1974, 370)
- Suppose the IQ of students in a particular age group are normally distributed with mean 100 and s.d. 15.
- It is also known that, for a given student, the test scores are normally distributed with mean equal to the student's IQ and s.d. equal to 5 .
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Suppose that a student just took an IQ test and scored 130.
- Suppose that a student just took an IQ test and scored 130 .
- What is the best prediction of the student's IQ?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Suppose that a student just took an IQ test and scored 130 .
- What is the best prediction of the student's IQ?
- The answer is not 130 .
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Suppose that a student just took an IQ test and scored 130 .
- What is the best prediction of the student's IQ?
- The answer is not 130 .
- Why not?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Suppose that a student just took an IQ test and scored 130.
- What is the best prediction of the student's IQ?
- The answer is not 130 .
- Why not?
- If I had not told you the previous stories, the answer would be 130 . But ...
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Suppose that a student just took an IQ test and scored 130.
- What is the best prediction of the student's IQ?
- The answer is not 130 .
- Why not?
- If I had not told you the previous stories, the answer would be 130 . But ...
- What stories?
- The stories provide additional information.
- The stories provide additional information.
- This, combined with the observed data, 130, leads to the best prediction of the person's IQ: 127.
- The stories provide additional information.
- This, combined with the observed data, 130, leads to the best prediction of the person's IQ: 127.
- Don't ask me how I get it (conditional expectation under Gaussian distribution).
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- The stories provide additional information.
- This, combined with the observed data, 130, leads to the best prediction of the person's IQ: 127 .
- Don't ask me how I get it (conditional expectation under Gaussian distribution).
- Bottom line: One can do better with more information - a simple, common-sense idea.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- The stories provide additional information.
- This, combined with the observed data, 130, leads to the best prediction of the person's IQ: 127 .
- Don't ask me how I get it (conditional expectation under Gaussian distribution).
- Bottom line: One can do better with more information - a simple, common-sense idea.
- How to borrow strength?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Some "common sense" lines:
- Some "common sense" lines:
- "If you know more, you can do better"
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Some "common sense" lines:
- "If you know more, you can do better"
- "Doing something is usually (not always) better than doing nothing"
- Some "common sense" lines:
- "If you know more, you can do better"
- "Doing something is usually (not always) better than doing nothing"
- "There's no free lunch"
- Some "common sense" lines:
- "If you know more, you can do better"
- "Doing something is usually (not always) better than doing nothing"
- "There's no free lunch"
- We can borrow strength by utilizing a statistical model.
- Some "common sense" lines:
- "If you know more, you can do better"
- "Doing something is usually (not always) better than doing nothing"
- "There's no free lunch"
- We can borrow strength by utilizing a statistical model.
- A statistical model allows you to, all of a sudden, known a lot more; but you don't know that for sure.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Some "common sense" lines:
- "If you know more, you can do better"
- "Doing something is usually (not always) better than doing nothing"
- "There's no free lunch"
- We can borrow strength by utilizing a statistical model.
- A statistical model allows you to, all of a sudden, known a lot more; but you don't know that for sure.
- Therefore, there is a little bit of "gamble", but it's an educated gamble.
${ }^{\square}$ Nov. 14, 2023, Washington, D.


## 2. Statistical modeling in surveys

- The use of statistical models in surveys is well established (e.g., Fuller 2009, ch. 5, Lohr 2022, ch. 11).
${ }^{\square}$ Nov. 14, 2023, Washington, D.


## 2. Statistical modeling in surveys

- The use of statistical models in surveys is well established (e.g., Fuller 2009, ch. 5, Lohr 2022, ch. 11).
- Little (2008): Two approaches to weighting the survey data, $\bar{y}_{w}=\sum_{i=1}^{n} w_{i} y_{i}$.
${ }^{\square}$ Nov. 14, 2023, Washington, D.


## 2. Statistical modeling in surveys

- The use of statistical models in surveys is well established (e.g., Fuller 2009, ch. 5, Lohr 2022, ch. 11).
- Little (2008): Two approaches to weighting the survey data, $\bar{y}_{w}=\sum_{i=1}^{n} w_{i} y_{i}$.
- 1. Model-based (linear regression): $y_{i}=x_{i}^{\prime} \beta+\epsilon_{i}, \operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2} / a_{i}, a_{i}$ known. Choose $w_{i} \propto a_{i}$.

Nov. 14, 2023, Washington, D.

## 2. Statistical modeling in surveys

- The use of statistical models in surveys is well established (e.g., Fuller 2009, ch. 5, Lohr 2022, ch. 11).
- Little (2008): Two approaches to weighting the survey data, $\bar{y}_{w}=\sum_{i=1}^{n} w_{i} y_{i}$.
- 1. Model-based (linear regression): $y_{i}=x_{i}^{\prime} \beta+\epsilon_{i}, \operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2} / a_{i}, a_{i}$ known. Choose $w_{i} \propto a_{i}$.
- 2. Design-based: Choose $w_{i} \propto 1 / \pi_{i}, \pi_{i}=$ selection probability.


## 2. Statistical modeling in surveys

- The use of statistical models in surveys is well established (e.g., Fuller 2009, ch. 5, Lohr 2022, ch. 11).
- Little (2008): Two approaches to weighting the survey data, $\bar{y}_{w}=\sum_{i=1}^{n} w_{i} y_{i}$.
- 1. Model-based (linear regression): $y_{i}=x_{i}^{\prime} \beta+\epsilon_{i}, \operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2} / a_{i}, a_{i}$ known. Choose $w_{i} \propto a_{i}$.
- 2. Design-based: Choose $w_{i} \propto 1 / \pi_{i}, \pi_{i}=$ selection probability.
- Which one is correct?


## 2. Statistical modeling in surveys

- The use of statistical models in surveys is well established (e.g., Fuller 2009, ch. 5, Lohr 2022, ch. 11).
- Little (2008): Two approaches to weighting the survey data, $\bar{y}_{w}=\sum_{i=1}^{n} w_{i} y_{i}$.
- 1. Model-based (linear regression): $y_{i}=x_{i}^{\prime} \beta+\epsilon_{i}, \operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2} / a_{i}, a_{i}$ known. Choose $w_{i} \propto a_{i}$.
- 2. Design-based: Choose $w_{i} \propto 1 / \pi_{i}, \pi_{i}=$ selection probability.
- Which one is correct?
- Does it matter?
- Does truth, or existence of truth, matter?
- Does truth, or existence of truth, matter?
- "You can't handle the truth" - Jack Nicholson, "A Few Good Men" Nov. 14, 2023, Washington, D.
- Does truth, or existence of truth, matter?
- "You can't handle the truth" - Jack Nicholson, "A Few Good Men"
- "All models are wrong ... some are useful" - George Box

Nov. 14, 2023, Washington, D.

- Does truth, or existence of truth, matter?
- "You can't handle the truth" - Jack Nicholson, "A Few Good Men"
- "All models are wrong ... some are useful" - George Box
- "It doesn't matter whether a cat is white or black, as long as it catches mice" - Deng Xiaoping, former Chinese leader
- Does truth, or existence of truth, matter?
- "You can't handle the truth" - Jack Nicholson, "A Few Good Men"
- "All models are wrong ... some are useful" - George Box
- "It doesn't matter whether a cat is white or black, as long as it catches mice" - Deng Xiaoping, former Chinese leader
- It doesn't matter whether a statistical model is right or wrong, as long as it helps.

Nov. 14, 2023, Washington, D.

- How do we know a model is a good one (if there is no "right" model)?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- How do we know a model is a good one (if there is no "right" model)?
- Short-term and long-term answers.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- How do we know a model is a good one (if there is no "right" model)?
- Short-term and long-term answers.
- Short-term: The model has to be reasonable by the common sense.
- How do we know a model is a good one (if there is no "right" model)?
- Short-term and long-term answers.
- Short-term: The model has to be reasonable by the common sense.
- Example. Discrete response model (e.g., McFadden \& Kenneth 2000).

Nov. 14, 2023, Washington, D.

- How do we know a model is a good one (if there is no "right" model)?
- Short-term and long-term answers.
- Short-term: The model has to be reasonable by the common sense.
- Example. Discrete response model (e.g., McFadden \& Kenneth 2000).
- Long-term: "Forever green is the tree of life" (Johann Wolfgang von Goethe, Faust: Part I).

Nov. 14, 2023, Washington, D.

- How do we know a model is a good one (if there is no "right" model)?
- Short-term and long-term answers.
- Short-term: The model has to be reasonable by the common sense.
- Example. Discrete response model (e.g., McFadden \& Kenneth 2000).
- Long-term: "Forever green is the tree of life" (Johann Wolfgang von Goethe, Faust: Part I).
- Example (cont.). Many real-life applications in Economics (leading to the 2000 Nobel Prize in Economical Sciences), and other fields.

Nov. 14, 2023, Washington, D.

- How do we know a model is a good one (if there is no "right" model)?
- Short-term and long-term answers.
- Short-term: The model has to be reasonable by the common sense.
- Example. Discrete response model (e.g., McFadden \& Kenneth 2000).
- Long-term: "Forever green is the tree of life" (Johann Wolfgang von Goethe, Faust: Part I).
- Example (cont.). Many real-life applications in Economics (leading to the 2000 Nobel Prize in Economical Sciences), and other fields.
- Example 2. Small area estimation (later).

Nov. 14, 2023, Washington, D.

- Signature page of my Ph. D. thesis (UC Berkeley, 1995)

- Previous Morris Hansen Lectures: Use of models in surveys
- Previous Morris Hansen Lectures: Use of models in surveys
- Graham Kalton (2000) discussed what he called model-dependent methods; identified three areas in which models are particularly useful: SAE, missing data, and variance estimation.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Previous Morris Hansen Lectures: Use of models in surveys
- Graham Kalton (2000) discussed what he called model-dependent methods; identified three areas in which models are particularly useful: SAE, missing data, and variance estimation.
- He discussed, in particular, the SAIPE (Small Area Income \& Poverty Estimation) program and its evaluations.

Nov. 14, 2023, Washington, D.

- Previous Morris Hansen Lectures: Use of models in surveys
- Graham Kalton (2000) discussed what he called model-dependent methods; identified three areas in which models are particularly useful: SAE, missing data, and variance estimation.
- He discussed, in particular, the SAIPE (Small Area Income \& Poverty Estimation) program and its evaluations.
- Concluded that "careful attention needs to be paid to the development of an appropriate model and its evaluation".
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Previous Morris Hansen Lectures: Use of models in surveys
- Graham Kalton (2000) discussed what he called model-dependent methods; identified three areas in which models are particularly useful: SAE, missing data, and variance estimation.
- He discussed, in particular, the SAIPE (Small Area Income \& Poverty Estimation) program and its evaluations.
- Concluded that "careful attention needs to be paid to the development of an appropriate model and its evaluation".
- Rick Valliant (2022) discussed history of explicit models used in sample design and estimation, including an earlier paper of Hansen (1961), in which the author found purely design-based approach was inadequate for analyzing surveys subject to non-responses and other problems.

Nov. 14, 2023, Washington, D.

- Two major variants of statistical modelling (Little 2008)
${ }^{4}$ Nov. 14, 2023, Washington, D.
- Two major variants of statistical modelling (Little 2008)
- 1. The super-population (SP) modelling

Nov. 14, 2023, Washingtōn, D.

- Two major variants of statistical modelling (Little 2008)
- 1. The super-population (SP) modelling
- 2. Bayesian modelling
- Two major variants of statistical modelling (Little 2008)
- 1. The super-population (SP) modelling
- 2. Bayesian modelling
- Under an SP model, the finite (real) population is assumed to be a random sample from a "super-population".
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Two major variants of statistical modelling (Little 2008)
- 1. The super-population (SP) modelling
- 2. Bayesian modelling
- Under an SP model, the finite (real) population is assumed to be a random sample from a "super-population".
- A random sample, $Y$, from the super-population is assumed to have distribution $p(Y \mid \theta)$, where the probability distribution, $p(\cdot \mid \theta)$, is specified under an assumed model (e.g., regression) and $\theta$ is the vector of parameters under the model.
- Here, we focus on parametric models for simplicity.

Nov. 14, 2023, Washington, D.

- Here, we focus on parametric models for simplicity.
- Under a Bayesian model, there is additional prior information about $\theta$, in terms of a prior distribution, $\pi(\theta)$.

Nov. 14, 2023, Washington, D.

- Here, we focus on parametric models for simplicity.
- Under a Bayesian model, there is additional prior information about $\theta$, in terms of a prior distribution, $\pi(\theta)$.
- The prior distribution for $Y$ is then expressed as

$$
\pi(Y)=\int p(Y \mid \theta) \pi(\theta) d \theta
$$

${ }^{\square}$ Nov. 14, 2023, Washington, D.

- Here, we focus on parametric models for simplicity.
- Under a Bayesian model, there is additional prior information about $\theta$, in terms of a prior distribution, $\pi(\theta)$.
- The prior distribution for $Y$ is then expressed as

$$
\pi(Y)=\int p(Y \mid \theta) \pi(\theta) d \theta
$$

- The posterior inference about the non-sampled part of the population is then carried out via the Bayes' Theorem.
${ }^{\square}$ Nov. 14, 2023, Washington, D.


## 3. Model selection

- Needs for model selection (e.g., Lahiri 2001, Pfeffermann 2013, Lumley and Scott 2017)


## 3. Model selection

- Needs for model selection (e.g., Lahiri 2001, Pfeffermann 2013, Lumley and Scott 2017)
- "Selection" is the key word.
${ }^{\square}$ Nov. 14, 2023, Washington, D.


## 3. Model selection

- Needs for model selection (e.g., Lahiri 2001, Pfeffermann 2013, Lumley and Scott 2017)
- "Selection" is the key word.
- Example: Choice of weights.


## 3. Model selection

- Needs for model selection (e.g., Lahiri 2001, Pfeffermann 2013, Lumley and Scott 2017)
- "Selection" is the key word.
- Example: Choice of weights.
- Traditional approaches: Information criteria, shrinkage selection/estimation (e.g., Müller et al. 2013).

Nov. 14, 2023, Washington, D.

## 3. Model selection

- Needs for model selection (e.g., Lahiri 2001, Pfeffermann 2013, Lumley and Scott 2017)
- "Selection" is the key word.
- Example: Choice of weights.
- Traditional approaches: Information criteria, shrinkage selection/estimation (e.g., Müller et al. 2013).
- Big question: Is model selection a statistical problem?
${ }^{\square}$ Nov. 14, 2023, Washington, D.


## 3. Model selection

- Needs for model selection (e.g., Lahiri 2001, Pfeffermann 2013, Lumley and Scott 2017)
- "Selection" is the key word.
- Example: Choice of weights.
- Traditional approaches: Information criteria, shrinkage selection/estimation (e.g., Müller et al. 2013).
- Big question: Is model selection a statistical problem?
- Answer: No, it's not.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- If not, why is a criterion for model selection, such as the AIC, solely based on statistical consideration?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- If not, why is a criterion for model selection, such as the AIC, solely based on statistical consideration?
- Practical considerations, specific to the real-life problem we're dealing with, must be taken into consideration.

Nov. 14, 2023, Washington, D.

- If not, why is a criterion for model selection, such as the AIC, solely based on statistical consideration?
- Practical considerations, specific to the real-life problem we're dealing with, must be taken into consideration.
- How?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- If not, why is a criterion for model selection, such as the AIC, solely based on statistical consideration?
- Practical considerations, specific to the real-life problem we're dealing with, must be taken into consideration.
- How?
- The fence methods (Jiang et al. 2008); also see Müllet et al. 2013, Pfeffermann 2013, Rao \& Molina 2015, Jiang \& Nguyen 2016).

Nov. 14, 2023, Washington, D.

- If not, why is a criterion for model selection, such as the AIC, solely based on statistical consideration?
- Practical considerations, specific to the real-life problem we're dealing with, must be taken into consideration.
- How?
- The fence methods (Jiang et al. 2008); also see Müllet et al. 2013, Pfeffermann 2013, Rao \& Molina 2015, Jiang \& Nguyen 2016).
- Idea: 1. Build a "statistical fence" to satisfy statistical consideration of model fitting. The fence isolates a subset of candidate models that meet the model-fitting threshold.

Nov. 14, 2023, Washington, D.

- 2. Within the fence, incorporate other considerations to identify the optimal model.
- 2. Within the fence, incorporate other considerations to identify the optimal model.
- For example, parsimony is one "other" consideration that is often used;
- 2. Within the fence, incorporate other considerations to identify the optimal model.
- For example, parsimony is one "other" consideration that is often used;
- but (here is the key) practical considerations can also be incorporated in searching for the optimal model within the fence.
- 2. Within the fence, incorporate other considerations to identify the optimal model.
- For example, parsimony is one "other" consideration that is often used;
- but (here is the key) practical considerations can also be incorporated in searching for the optimal model within the fence.
- Such practical considerations can be scientific, economical, legal, or political (e.g., the model must not require privacy-protected information to "train").
- 2. Within the fence, incorporate other considerations to identify the optimal model.
- For example, parsimony is one "other" consideration that is often used;
- but (here is the key) practical considerations can also be incorporated in searching for the optimal model within the fence.
- Such practical considerations can be scientific, economical, legal, or political (e.g., the model must not require privacy-protected information to "train").
- 3. Finally, the threshold of the fence may be determined based on the principle of "letting the data speak".

Nov. 14, 2023, Washington, D.

- Building the fence:

$$
Q(M)-Q\left(M_{*}\right) \leq c,
$$

where $Q(\cdot)$ is a measure of lack-of-fit, $M$ is a candidate model, and $M_{*}$ is a (candidate) model that is optimal in terms of model fitting (i.e., one that minimizes $Q$ ).
${ }^{\square}$ Nov. 14, 2023, Washington, D.

- Building the fence:

$$
Q(M)-Q\left(M_{*}\right) \leq c,
$$

where $Q(\cdot)$ is a measure of lack-of-fit, $M$ is a candidate model, and $M_{*}$ is a (candidate) model that is optimal in terms of model fitting (i.e., one that minimizes $Q$ ).

- For example, in regression model selection, let $M_{\mathrm{f}}$ denotes the full model, that is, the model that includes all of the candidate predictors.

Nov. 14, 2023, Washington, D.

- Building the fence:

$$
Q(M)-Q\left(M_{*}\right) \leq c,
$$

where $Q(\cdot)$ is a measure of lack-of-fit, $M$ is a candidate model, and $M_{*}$ is a (candidate) model that is optimal in terms of model fitting (i.e., one that minimizes $Q$ ).

- For example, in regression model selection, let $M_{\mathrm{f}}$ denotes the full model, that is, the model that includes all of the candidate predictors.
- If $Q$ is the $\operatorname{SSR}$ (sum of squares of residuals), then $M_{*}=M_{\mathrm{f}}$.
- Building the fence:

$$
Q(M)-Q\left(M_{*}\right) \leq c,
$$

where $Q(\cdot)$ is a measure of lack-of-fit, $M$ is a candidate model, and $M_{*}$ is a (candidate) model that is optimal in terms of model fitting (i.e., one that minimizes $Q$ ).

- For example, in regression model selection, let $M_{\mathrm{f}}$ denotes the full model, that is, the model that includes all of the candidate predictors.
- If $Q$ is the $\operatorname{SSR}$ (sum of squares of residuals), then $M_{*}=M_{\mathrm{f}}$.
- Another popular choice of $Q$ is the negative log-likelihood, which applies beyond the linear models. See Jiang \& Nguyen (2016) for other examples of $Q$.
- A challenging problem: How to choose $c$, the threshold of the fence?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- A challenging problem: How to choose $c$, the threshold of the fence?
- Example (Adaptive fence; Jiang et al. 2008, 2009): To be specific, let parsimony be the criterion of selecting the optimal model within the fence.

Nov. 14, 2023, Washington, D.

- A challenging problem: How to choose $c$, the threshold of the fence?
- Example (Adaptive fence; Jiang et al. 2008, 2009): To be specific, let parsimony be the criterion of selecting the optimal model within the fence.
- Also, for simplicity, consider a "classical" setting, in which the space of candidate models contains a true model, that is, a model under which the data are samples generated.
${ }^{4}$ Nov. 14, 2023, Washington, D.
- A challenging problem: How to choose $c$, the threshold of the fence?
- Example (Adaptive fence; Jiang et al. 2008, 2009): To be specific, let parsimony be the criterion of selecting the optimal model within the fence.
- Also, for simplicity, consider a "classical" setting, in which the space of candidate models contains a true model, that is, a model under which the data are samples generated.
- Under such a setting, an "over-fitting model", that is, a model that includes the true model as a special case, is also a correct model; it may not be optimal, though, because it can be simplified.

Nov. 14, 2023, Washington, D.

- A challenging problem: How to choose $c$, the threshold of the fence?
- Example (Adaptive fence; Jiang et al. 2008, 2009): To be specific, let parsimony be the criterion of selecting the optimal model within the fence.
- Also, for simplicity, consider a "classical" setting, in which the space of candidate models contains a true model, that is, a model under which the data are samples generated.
- Under such a setting, an "over-fitting model", that is, a model that includes the true model as a special case, is also a correct model; it may not be optimal, though, because it can be simplified.
- In particular, $M_{\mathrm{f}}$ is a correct model.

Nov. 14, 2023, Washington, D.

- Let $M_{c}$ denotes the model selected using the fence procedure with the given threshold $c$.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Let $M_{c}$ denotes the model selected using the fence procedure with the given threshold $c$.
- Ideally, one would like to choose $c$ such that

$$
\begin{equation*}
P=\mathrm{P}\left(M_{c}=M_{\mathrm{opt}}\right) \tag{1}
\end{equation*}
$$

is maximized, where $M_{\mathrm{opt}}$ denotes the optimal model.

Nov. 14, 2023, Washington, D.

- Let $M_{c}$ denotes the model selected using the fence procedure with the given threshold $c$.
- Ideally, one would like to choose $c$ such that

$$
\begin{equation*}
P=\mathrm{P}\left(M_{c}=M_{\mathrm{opt}}\right) \tag{1}
\end{equation*}
$$

is maximized, where $M_{\text {opt }}$ denotes the optimal model.

- However, two things are unknown in (1).

Nov. 14, 2023, Washington, D.

- Let $M_{c}$ denotes the model selected using the fence procedure with the given threshold $c$.
- Ideally, one would like to choose $c$ such that

$$
\begin{equation*}
P=\mathrm{P}\left(M_{c}=M_{\mathrm{opt}}\right) \tag{1}
\end{equation*}
$$

is maximized, where $M_{\text {opt }}$ denotes the optimal model.

- However, two things are unknown in (1).
- 1. How to compute the probability, P , which depends on the underlying model?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Let $M_{c}$ denotes the model selected using the fence procedure with the given threshold $c$.
- Ideally, one would like to choose $c$ such that

$$
\begin{equation*}
P=\mathrm{P}\left(M_{c}=M_{\mathrm{opt}}\right) \tag{1}
\end{equation*}
$$

is maximized, where $M_{\text {opt }}$ denotes the optimal model.

- However, two things are unknown in (1).
- 1. How to compute the probability, P , which depends on the underlying model?
- 2. What is $M_{\mathrm{opt}}$.

Nov. 14, 2023, Washington, D.

- Idea 1: Because we know $M_{\mathrm{f}}$ is, at least, a correct model, we can bootstrap under $M_{\mathrm{f}}$.
${ }^{4}$ Nov. 14, 2023, Washington, D.
- Idea 1: Because we know $M_{\mathrm{f}}$ is, at least, a correct model, we can bootstrap under $M_{\mathrm{f}}$.
- Idea 2: "Maximum likelihood". For a given candidate model, $M$, let $p^{*}(M)=\mathrm{P}^{*}\left(M_{c}=M\right)$, that is, the empirical (bootstrap) probability that $M$ is selected.
${ }^{4}$ Nov. 14, 2023, Washington, D.
- Idea 1: Because we know $M_{\mathrm{f}}$ is, at least, a correct model, we can bootstrap under $M_{\mathrm{f}}$.
- Idea 2: "Maximum likelihood". For a given candidate model, $M$, let $p^{*}(M)=\mathrm{P}^{*}\left(M_{c}=M\right)$, that is, the empirical (bootstrap) probability that $M$ is selected.
- Let $p^{*}$ be the maximum of $p^{*}(M)$ overall candidate models $M$. Note that $p^{*}$ depends on $c$, that is, $p^{*}=p_{c}^{*}$.
${ }^{4}$ Nov. 14, 2023, Washington, D.
- Idea 1: Because we know $M_{\mathrm{f}}$ is, at least, a correct model, we can bootstrap under $M_{\mathrm{f}}$.
- Idea 2: "Maximum likelihood". For a given candidate model, $M$, let $p^{*}(M)=\mathrm{P}^{*}\left(M_{c}=M\right)$, that is, the empirical (bootstrap) probability that $M$ is selected.
- Let $p^{*}$ be the maximum of $p^{*}(M)$ overall candidate models $M$. Note that $p^{*}$ depends on $c$, that is, $p^{*}=p_{c}^{*}$.
- That is exactly the point!
${ }^{4}$ Nov. 14, 2023, Washington, D.
- Idea 1: Because we know $M_{\mathrm{f}}$ is, at least, a correct model, we can bootstrap under $M_{\mathrm{f}}$.
- Idea 2: "Maximum likelihood". For a given candidate model, $M$, let $p^{*}(M)=\mathrm{P}^{*}\left(M_{c}=M\right)$, that is, the empirical (bootstrap) probability that $M$ is selected.
- Let $p^{*}$ be the maximum of $p^{*}(M)$ overall candidate models $M$. Note that $p^{*}$ depends on $c$, that is, $p^{*}=p_{c}^{*}$.
- That is exactly the point!
- Choose $c$ that maximizes $p_{c}^{*}$.

Nov. 14, 2023, Washington, D.

- It should be noted that such a plot of $p_{c}^{*}$ vs $c$ is typically W shaped, rather than $\Lambda$ shaped.
- It should be noted that such a plot of $p_{c}^{*}$ vs $c$ is typically W shaped, rather than $\Lambda$ shaped.
- Why?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- It should be noted that such a plot of $p_{c}^{*}$ vs $c$ is typically W shaped, rather than $\Lambda$ shaped.
- Why?
- What happens when $c=0$ ?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- It should be noted that such a plot of $p_{c}^{*}$ vs $c$ is typically W shaped, rather than $\Lambda$ shaped.
- Why?
- What happens when $c=0$ ?
- Recall $Q(M)-Q\left(M_{\mathrm{f}}\right) \leq c$.

Nov. 14, 2023, Washington, D.

- It should be noted that such a plot of $p_{c}^{*}$ vs $c$ is typically $W$ shaped, rather than $\Lambda$ shaped.
- Why?
- What happens when $c=0$ ?
- Recall $Q(M)-Q\left(M_{\mathrm{f}}\right) \leq c$.
- $M=M_{\mathrm{f}}$ is the choice, every single time; hence $p_{0}^{*}=1$.
- It should be noted that such a plot of $p_{c}^{*}$ vs $c$ is typically $W$ shaped, rather than $\Lambda$ shaped.
- Why?
- What happens when $c=0$ ?
- Recall $Q(M)-Q\left(M_{\mathrm{f}}\right) \leq c$.
- $M=M_{\mathrm{f}}$ is the choice, every single time; hence $p_{0}^{*}=1$.
- Similarly, when $c$ is sufficiently large, everybody is in the fence; as a result, $M_{c}$ is the model that has the minimum dimension (assumed unique), denoted by $M_{\min }$, every single time.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- It should be noted that such a plot of $p_{c}^{*}$ vs $c$ is typically $W$ shaped, rather than $\Lambda$ shaped.
- Why?
- What happens when $c=0$ ?
- Recall $Q(M)-Q\left(M_{\mathrm{f}}\right) \leq c$.
- $M=M_{\mathrm{f}}$ is the choice, every single time; hence $p_{0}^{*}=1$.
- Similarly, when $c$ is sufficiently large, everybody is in the fence; as a result, $M_{c}$ is the model that has the minimum dimension (assumed unique), denoted by $M_{\min }$, every single time.
- Thus, once again, $p_{c}^{*}=1$, if $c$ is sufficiently large.
- It should be noted that such a plot of $p_{c}^{*}$ vs $c$ is typically W shaped, rather than $\Lambda$ shaped.
- Why?
- What happens when $c=0$ ?
- Recall $Q(M)-Q\left(M_{\mathrm{f}}\right) \leq c$.
- $M=M_{\mathrm{f}}$ is the choice, every single time; hence $p_{0}^{*}=1$.
- Similarly, when $c$ is sufficiently large, everybody is in the fence; as a result, $M_{c}$ is the model that has the minimum dimension (assumed unique), denoted by $M_{\min }$, every single time.
- Thus, once again, $p_{c}^{*}=1$, if $c$ is sufficiently large.
- One is typically looking for the "peak in the middle".


## 4. Example

- Battese, Harter \& Fuller (1988; BHF) presented data for 12 lowa counties obtained from the 1978 June Enumerative Survey of the U.S. Dept. of Agriculture.


## 4. Example

- Battese, Harter \& Fuller (1988; BHF) presented data for 12 lowa counties obtained from the 1978 June Enumerative Survey of the U.S. Dept. of Agriculture.
- Also available were data from land observatory satellites on crop areas involving corn and soybeans.

Nov. 14, 2023, Washington, D.

## 4. Example

- Battese, Harter \& Fuller (1988; BHF) presented data for 12 lowa counties obtained from the 1978 June Enumerative Survey of the U.S. Dept. of Agriculture.
- Also available were data from land observatory satellites on crop areas involving corn and soybeans.
- This is a classical example of borrowing strength via a statistical model.
${ }^{\square}$ Nov. 14, 2023, Washington, D.


## 4. Example

- Battese, Harter \& Fuller (1988; BHF) presented data for 12 lowa counties obtained from the 1978 June Enumerative Survey of the U.S. Dept. of Agriculture.
- Also available were data from land observatory satellites on crop areas involving corn and soybeans.
- This is a classical example of borrowing strength via a statistical model.
- The latter is a linear mixed model (LMM) in the form of

$$
y_{i j}=x_{i j}^{\prime} \beta+v_{i}+e_{i j}
$$

$i=1, \ldots, m, j=1, \ldots, n_{i}$, where $\ldots$
Nov. 14, 2023, Washiñgton, D.

- The authors discussed the choice of $x_{i j}^{\prime} \beta$ in the LMM, which is viewed as a model selection problem.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- The authors discussed the choice of $x_{i j}^{\prime} \beta$ in the LMM, which is viewed as a model selection problem.
- They suggested $x_{i j}^{\prime} \beta=\beta_{0}+\beta_{1} x_{i j 1}+\beta_{2} x_{i j 2}$, where $x_{i j 1}$ and $x_{i j 2}$ are the numbers of pixels classified as corn and soybeans, respectively, for both the corn observation and the soybeans observation.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- The authors discussed the choice of $x_{i j}^{\prime} \beta$ in the LMM, which is viewed as a model selection problem.
- They suggested $x_{i j}^{\prime} \beta=\beta_{0}+\beta_{1} x_{i j 1}+\beta_{2} x_{i j 2}$, where $x_{i j 1}$ and $x_{i j 2}$ are the numbers of pixels classified as corn and soybeans, respectively, for both the corn observation and the soybeans observation.
- Why?
- The authors discussed the choice of $x_{i j}^{\prime} \beta$ in the LMM, which is viewed as a model selection problem.
- They suggested $x_{i j}^{\prime} \beta=\beta_{0}+\beta_{1} x_{i j 1}+\beta_{2} x_{i j 2}$, where $x_{i j 1}$ and $x_{i j 2}$ are the numbers of pixels classified as corn and soybeans, respectively, for both the corn observation and the soybeans observation.
- Why?
- This is what Fuller said: ...
- The authors discussed the choice of $x_{i j}^{\prime} \beta$ in the LMM, which is viewed as a model selection problem.
- They suggested $x_{i j}^{\prime} \beta=\beta_{0}+\beta_{1} x_{i j 1}+\beta_{2} x_{i j 2}$, where $x_{i j 1}$ and $x_{i j 2}$ are the numbers of pixels classified as corn and soybeans, respectively, for both the corn observation and the soybeans observation.
- Why?
- This is what Fuller said: ...
- Nevertheless, the authors also discussed other choices of $x_{i j}^{\prime} \beta$, such as including the squares and cross product of $x_{i j r}, r=1,2$.
${ }^{4}$ Nov. 14, 2023, Washington, D.
- If we consider this as a variable selection problem, the space of candidate predictors may be chosen as

$$
\left\{1, x_{i j 1}, x_{i j 2}, x_{i j 2}^{2}, x_{i j 2}^{2}, x_{i j 1} x_{i j 2}\right\}
$$

- If we consider this as a variable selection problem, the space of candidate predictors may be chosen as

$$
\left\{1, x_{i j 1}, x_{i j 2}, x_{i j 2}^{2}, x_{i j 2}^{2}, x_{i j 1} x_{i j 2}\right\}
$$

- If we apply the fence methods, a standard measure of lack-of-fit, $Q$, is the negative log-likelihood.

Nov. 14, 2023, Washington, D.

- If we consider this as a variable selection problem, the space of candidate predictors may be chosen as

$$
\left\{1, x_{i j 1}, x_{i j 2}, x_{i j 2}^{2}, x_{i j 2}^{2}, x_{i j 1} x_{i j 2}\right\}
$$

- If we apply the fence methods, a standard measure of lack-of-fit, $Q$, is the negative log-likelihood.
- For simplicity, let us use the parsimony criterion for selecting the model within the fence.

Nov. 14, 2023, Washington, D.

- If we consider this as a variable selection problem, the space of candidate predictors may be chosen as

$$
\left\{1, x_{i j 1}, x_{i j 2}, x_{i j 2}^{2}, x_{i j 2}^{2}, x_{i j 1} x_{i j 2}\right\}
$$

- If we apply the fence methods, a standard measure of lack-of-fit, $Q$, is the negative log-likelihood.
- For simplicity, let us use the parsimony criterion for selecting the model within the fence.
- The threshold, $c$, is chosen adaptively as described above.

Nov. 14, 2023, Washington, D.

- The selection results, compared with the BHF models, are presented in the table below:

| Outcome Variable | Predictors |  |
| :---: | :---: | :---: |
|  | BHF Model | Adaptive Fence |
| Corn | Corn \& Soybeans | Corn |
| Soybeans | Corn \& Soybeans | Soybeans |

- The selection results, compared with the BHF models, are presented in the table below:

| Outcome Variable | Predictors |  |
| :---: | :---: | :---: |
|  | BHF Model | Adaptive Fence |
| Corn | Corn \& Soybeans | Corn |
| Soybeans | Corn \& Soybeans | Soybeans |

- The plots of $p_{c}^{*}$ vs $c$ ?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- AF Selection for the Crops Data. Left: $p^{*}$ vs $c=c_{n}$ for selecting the corn model. Right: $p^{*}$ vs $c=c_{n}$ for selecting the soybeans model.


${ }^{\square}$ Nov. 14, 2023, Washington, D.


## 5. Discussion

- It was said that a potential advantage of the fence methods is incorporating consideration of practical interest.


## 5. Discussion

- It was said that a potential advantage of the fence methods is incorporating consideration of practical interest.
- Question: Do you have a practical example of doing the fence this way?
${ }^{\square}$ Nov. 14, 2023, Washington, D.


## 5. Discussion

- It was said that a potential advantage of the fence methods is incorporating consideration of practical interest.
- Question: Do you have a practical example of doing the fence this way?
- Answer: I don't.


## 5. Discussion

- It was said that a potential advantage of the fence methods is incorporating consideration of practical interest.
- Question: Do you have a practical example of doing the fence this way?
- Answer: I don't.
- What?

Nov. 14, 2023, Washington, D.

## 5. Discussion

- It was said that a potential advantage of the fence methods is incorporating consideration of practical interest.
- Question: Do you have a practical example of doing the fence this way?
- Answer: I don't.
- What?
- That's why I'm here.


## 5. Discussion

- It was said that a potential advantage of the fence methods is incorporating consideration of practical interest.
- Question: Do you have a practical example of doing the fence this way?
- Answer: I don't.
- What?
- That's why I'm here.
- It would've been nicer to come here with all questions and answers, but it is just as important to have some questions but no answers.
- And I believe the answers are on their way.
- And I believe the answers are on their way.
- Biggest challenges in implementing the fence methods: Computation, and artificial intelligence (AI).
- And I believe the answers are on their way.
- Biggest challenges in implementing the fence methods: Computation, and artificial intelligence (AI).
- Why computation?
- And I believe the answers are on their way.
- Biggest challenges in implementing the fence methods: Computation, and artificial intelligence (AI).
-Why computation?
- For example, the adaptive fence requires bootstrapping under the full model.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- And I believe the answers are on their way.
- Biggest challenges in implementing the fence methods: Computation, and artificial intelligence (AI).
-Why computation?
- For example, the adaptive fence requires bootstrapping under the full model.
- Bootstrap for high-dimensional model selection?
- Why AI?
- Why AI?
- For example, finding the "peak in the middle" in AF is something human eyes can arguably do better than a computer.

Nov. 14, 2023, Washington, D.

- Why AI?
- For example, finding the "peak in the middle" in AF is something human eyes can arguably do better than a computer.
- Really?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Why AI?
- For example, finding the "peak in the middle" in AF is something human eyes can arguably do better than a computer.
- Really?
- Many years ago, people also said that a computer could NOT defeat a chess (or go) grand master.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Why AI?
- For example, finding the "peak in the middle" in AF is something human eyes can arguably do better than a computer.
- Really?
- Many years ago, people also said that a computer could NOT defeat a chess (or go) grand master.
- We need some genius young people with good computer science training.
- Idea \& Execution
- Idea \& Execution
- It may take a second to come up with a beautiful idea, but many years of hard work to execute the idea.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Idea \& Execution
- It may take a second to come up with a beautiful idea, but many years of hard work to execute the idea.
- Which one is more important?
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Idea \& Execution
- It may take a second to come up with a beautiful idea, but many years of hard work to execute the idea.
- Which one is more important?
- Well, if you aim to publish a JASA paper, then Idea probably is.

Nov. 14, 2023, Washington, D.

- Idea \& Execution
- It may take a second to come up with a beautiful idea, but many years of hard work to execute the idea.
- Which one is more important?
- Well, if you aim to publish a JASA paper, then Idea probably is.
- But, look at Physics - for one thing, many Nobel prizes have been awarded to work that executed an existing idea.
- Idea \& Execution
- It may take a second to come up with a beautiful idea, but many years of hard work to execute the idea.
- Which one is more important?
- Well, if you aim to publish a JASA paper, then Idea probably is.
- But, look at Physics - for one thing, many Nobel prizes have been awarded to work that executed an existing idea.
- And, there are much more, if one goes beyond academics.
- Idea \& Execution
- It may take a second to come up with a beautiful idea, but many years of hard work to execute the idea.
- Which one is more important?
- Well, if you aim to publish a JASA paper, then Idea probably is.
- But, look at Physics - for one thing, many Nobel prizes have been awarded to work that executed an existing idea.
- And, there are much more, if one goes beyond academics.
- Real-life surveys is one of them.

Nov. 14, 2023, Washington, D.

## References

- Mood, A. M., Graybill, F. A., and Boes, D. C. (1974), Introduction to the Theory of Statistics, 3rd ed., McGraw-Hill, New York.
${ }^{\square}$ Nov. 14, 2023, Washington, D.


## References

- Mood, A. M., Graybill, F. A., and Boes, D. C. (1974), Introduction to the Theory of Statistics, 3rd ed., McGraw-Hill, New York.
- McFadden, D. and Kenneth, T. (2000), Mixed MNL model for discrete responses, J. Appl. Econ. 15, 447-470.

Nov. 14, 2023, Washington, D.

## References

- Mood, A. M., Graybill, F. A., and Boes, D. C. (1974), Introduction to the Theory of Statistics, 3rd ed., McGraw-Hill, New York.
- McFadden, D. and Kenneth, T. (2000), Mixed MNL model for discrete responses, J. Appl. Econ. 15, 447-470.
- Fuller, W. A. (2009), Sampling Statistics, Wiley


## References

- Mood, A. M., Graybill, F. A., and Boes, D. C. (1974), Introduction to the Theory of Statistics, 3rd ed., McGraw-Hill, New York.
- McFadden, D. and Kenneth, T. (2000), Mixed MNL model for discrete responses, J. Appl. Econ. 15, 447-470.
- Fuller, W. A. (2009), Sampling Statistics, Wiley
- Lohr, S. L. (2022), Sampling: Design and Analysis, 3rd ed., Chapman \& Hall.
${ }^{\square}$ Nov. 14, 2023, Washington, D.


## References

- Mood, A. M., Graybill, F. A., and Boes, D. C. (1974), Introduction to the Theory of Statistics, 3rd ed., McGraw-Hill, New York.
- McFadden, D. and Kenneth, T. (2000), Mixed MNL model for discrete responses, J. Appl. Econ. 15, 447-470.
- Fuller, W. A. (2009), Sampling Statistics, Wiley
- Lohr, S. L. (2022), Sampling: Design and Analysis, 3rd ed., Chapman \& Hall.
- Little, R. J. (2008), Weighting and prediction in sample surveys (with discussion), Calcutta Statist. Assoc. Bull. 60, 147-194.


## References

- Mood, A. M., Graybill, F. A., and Boes, D. C. (1974), Introduction to the Theory of Statistics, 3rd ed., McGraw-Hill, New York.
- McFadden, D. and Kenneth, T. (2000), Mixed MNL model for discrete responses, J. Appl. Econ. 15, 447-470.
- Fuller, W. A. (2009), Sampling Statistics, Wiley
- Lohr, S. L. (2022), Sampling: Design and Analysis, 3rd ed., Chapman \& Hall.
- Little, R. J. (2008), Weighting and prediction in sample surveys (with discussion), Calcutta Statist. Assoc. Bull. 60, 147-194.
- Lahiri, P. (2001), Model Selection — IMS Lec. Ser. 38, Institute of Mathematical Statistics.
${ }^{4}$ Nov. 14, 2023, Washington, D.


## References

- Mood, A. M., Graybill, F. A., and Boes, D. C. (1974), Introduction to the Theory of Statistics, 3rd ed., McGraw-Hill, New York.
- McFadden, D. and Kenneth, T. (2000), Mixed MNL model for discrete responses, J. Appl. Econ. 15, 447-470.
- Fuller, W. A. (2009), Sampling Statistics, Wiley
- Lohr, S. L. (2022), Sampling: Design and Analysis, 3rd ed., Chapman \& Hall.
- Little, R. J. (2008), Weighting and prediction in sample surveys (with discussion), Calcutta Statist. Assoc. Bull. 60, 147-194.
- Lahiri, P. (2001), Model Selection — IMS Lec. Ser. 38, Institute of Mathematical Statistics.
- Pfeffermann, D. (2013), New important developments in small area estimation, Statist. Sci. 28, 40-68.

Nov. 14, 2023, Washington, D.

- Lumley, T, and Scott, A. (2017), Fitting regression models to survey data, Statist. Sci. 32, 265-278.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Lumley, T, and Scott, A. (2017), Fitting regression models to survey data, Statist. Sci. 32, 265-278.
- Müller, S., Scealy, J. L., and Welsh, A. H. (2013), Model selection in linear mixed models, Statist. Sci. 28, 135-167.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Lumley, T, and Scott, A. (2017), Fitting regression models to survey data, Statist. Sci. 32, 265-278.
- Müller, S., Scealy, J. L., and Welsh, A. H. (2013), Model selection in linear mixed models, Statist. Sci. 28, 135-167.
- Jiang, J., Rao, J. S., Gu, Z., and Nguyen, T. (2008), Fence method for mixed model selection, Ann. Statist. 36, 1669-1692.
- Lumley, T, and Scott, A. (2017), Fitting regression models to survey data, Statist. Sci. 32, 265-278.
- Müller, S., Scealy, J. L., and Welsh, A. H. (2013), Model selection in linear mixed models, Statist. Sci. 28, 135-167.
- Jiang, J., Rao, J. S., Gu, Z., and Nguyen, T. (2008), Fence method for mixed model selection, Ann. Statist. 36, 1669-1692.
- Rao, J. N. K. and Molina, I. (2015), Small Area Estimation, 2nd ed., Wiley.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Lumley, T, and Scott, A. (2017), Fitting regression models to survey data, Statist. Sci. 32, 265-278.
- Müller, S., Scealy, J. L., and Welsh, A. H. (2013), Model selection in linear mixed models, Statist. Sci. 28, 135-167.
- Jiang, J., Rao, J. S., Gu, Z., and Nguyen, T. (2008), Fence method for mixed model selection, Ann. Statist. 36, 1669-1692.
- Rao, J. N. K. and Molina, I. (2015), Small Area Estimation, 2nd ed., Wiley.
- Jiang, J. and Nguyen, T. (2016), The Fence Methods, World Scientific, Singapore.
${ }^{\square}$ Nov. 14, 2023, Washington, D.
- Lumley, T, and Scott, A. (2017), Fitting regression models to survey data, Statist. Sci. 32, 265-278.
- Müller, S., Scealy, J. L., and Welsh, A. H. (2013), Model selection in linear mixed models, Statist. Sci. 28, 135-167.
- Jiang, J., Rao, J. S., Gu, Z., and Nguyen, T. (2008), Fence method for mixed model selection, Ann. Statist. 36, 1669-1692.
- Rao, J. N. K. and Molina, I. (2015), Small Area Estimation, 2nd ed., Wiley.
- Jiang, J. and Nguyen, T. (2016), The Fence Methods, World Scientific, Singapore.
- Jiang, J., Nguyen, T. and Rao, J. S. (2009), A simplified adaptive fence procedure, Statist. Probab. Letters 79, 625-629.

Nov. 14, 2023, Washington, D.

- Lumley, T, and Scott, A. (2017), Fitting regression models to survey data, Statist. Sci. 32, 265-278.
- Müller, S., Scealy, J. L., and Welsh, A. H. (2013), Model selection in linear mixed models, Statist. Sci. 28, 135-167.
- Jiang, J., Rao, J. S., Gu, Z., and Nguyen, T. (2008), Fence method for mixed model selection, Ann. Statist. 36, 1669-1692.
- Rao, J. N. K. and Molina, I. (2015), Small Area Estimation, 2nd ed., Wiley.
- Jiang, J. and Nguyen, T. (2016), The Fence Methods, World Scientific, Singapore.
- Jiang, J., Nguyen, T. and Rao, J. S. (2009), A simplified adaptive fence procedure, Statist. Probab. Letters 79, 625-629.
- Battese, G. E., Harter, R. M., and Fuller, W. A. (1988), An error-components model for prediction of county crop areas using survey and satellite data, J. Amer. Statist. Assoc. 80, 28-36.

Nov. 14, 2023, Washington, D.

