“Small Area Estimation: It’s Evolution in Five Decades” by Malay Ghosh

DISCUSSION

J. N. K. Rao

Carleton University, Ottawa, Canada

28th Annual Morris Hansen Lecture

October 30, 2019, Washington DC
Inference from survey data: Hansen

- Design unbiasedness not insisted upon because “it often results in much larger MSE than necessary”. Instead, design consistency deemed necessary for large samples.

- Model dependent strategies perform poorly in large samples even under small model misspecifications.

- Substantial advantage in small samples if model is appropriate. Sampling plan need not be a probability sampling plan. Relax the model by including additional variables but may not be adequate.
Motivation for SAE

• Demand for reliable local or small area statistics has greatly increased. Direct area-specific estimates are inadequate due to small domain sample sizes or even zero sample sizes.

• Necessary to “borrow strength” across related areas through linking models.

• Opposition to models has been overcome by the demand for small area estimation (Kalton 2018).
Basic area-level model

• **Notation:** m areas out of M are sampled. Associated parameters θ_i and direct estimators $\hat{\theta}_i, i = 1, \ldots, m$.

• **Sampling model:** $\hat{\theta}_i = \theta_i + e_i$ with $e_i \sim_{\text{ind}} N(0, \psi_i)$ and known sampling variance $\psi_i (i = 1, \ldots, m)$.

• **Matched linking model:** $\theta_i = z_i' \beta + v_i$ with $v_i \sim_{\text{iid}} N(0, \sigma_v^2)$ and area-level covariates z_i.

• **Fay and Herriot (1979):** $\theta_i = \log(\bar{Y}_i)$ with mean income \bar{Y}_i.
• For sampled areas, empirical best (EB) estimator of θ_i is given by $\hat{\theta}_i^{EB} = \tilde{\theta}_i^B (\hat{\beta}, \hat{\sigma}_v^2)$, where

 $\tilde{\theta}_i^B (\beta, \sigma_v^2) = \gamma_i \hat{\theta}_i + (1 - \gamma_i) (z_i' \beta)$ is the best estimator,

 $\gamma_i = \sigma_v^2 / (\sigma_v^2 + \psi_i)$ and $(\hat{\beta}, \hat{\sigma}_v^2)$ estimators of model parameters (β, σ_v^2): REML or FH moment estimators.

• For non-sampled areas, use synthetic estimator $\hat{\theta}_i^S = z_i' \hat{\beta}$

• Tacitly assumed that the population linking model holds for sampled and non-sampled areas separately: non-informative sampling of areas. Most of the literature assumes all areas are sampled: $m = M$.
Demonstrating merits of model-based SAE

- $MSE(\hat{\theta}_i^{EB}) \approx g_{1i}(\sigma_v^2) + g_{2i}(\sigma_v^2) + g_{3i}(\sigma_v^2)$. Leading term $g_{1i}(\sigma_v^2) = \gamma_i \psi_i$ is much smaller than ψ_i, the variance of $\hat{\theta}_i$, if γ_i is small. Second term is due to estimating β and third term due to estimating σ_v^2.

- Design MSE of EB estimator is not necessarily smaller than the variance of $\hat{\theta}_i$ for every area. Some averaging of MSEs needed (James-Stein 1961).
• External evaluation (Canadian experience): Census areas (CAs) are small areas. Direct estimate is unemployment rate from LFS and area-level covariate is EI beneficiary rate. Much larger survey (NHS) estimates treated as gold standard or true values (Hidiroglou et al. 2019)

• Average absolute relative error (ARE) over all areas: LFS direct estimates give 33.9% while EB estimates give 14.7%.

• For the 28 smallest areas reduction in ARE more pronounced: LFS give 70.4% and EB give 17.7%.
MSE estimation

• **Model MSE estimator** (Prasad and Rao, 1990)

\[mse_{PR}(\hat{\theta}^{EB}_i) \approx g_1(\hat{\sigma}^2) + g_2(\hat{\sigma}^2) + 2g_3(\hat{\sigma}^2). \]

• **Pfeffermann (2017):** National Statistical Agencies prefer estimates of design MSE of EB, similar to design MSE estimate of \(\hat{\theta}^{EB}_i \), conditional on \(\theta = (\theta_1, ..., \theta_m)' \).
• Exact design-unbiased MSE estimator can be highly unstable and can take negative values often when \(\psi_i \) is large relative to \(\sigma^2_v \) (Datta et al. 2011)

• Composite MSE estimator based on \(mse_d \) and \(mse_{PR} \):

\[
mse_c(\hat{\theta}_i^{EB}) = \hat{\gamma}_i mse_d(\hat{\theta}_i^{EB}) + (1 - \hat{\gamma}_i) mse_{PR}(\hat{\theta}_i^{EB})
\]

Alternative MSE estimator uses \(\sqrt{\hat{\gamma}_i} \) and \(1 - \sqrt{\hat{\gamma}_i} \): More weight to \(mse_d \).

Simulation study (Rao et al. 2019)

• \(m = 30 \) areas divided into five groups each of size six with equal \(\psi_i \) values: 2.0, 0.6, 0.5, 0.4, 0.2 and \(\sigma^2_v = 1 \).
Simulation results

- Average probability of getting negative mse_d is large (46%) for group 1 with large sampling variance. Modification leads to large ARB (94% for group 1). Probability is zero for mse_c across all areas.

- For group 1, ARB of mse_c is smaller relative to mse_{PR} at the expense of increase in RRMSE. For other areas, ARB of mse_{PR} persists unlike mse_c and RRMSE values are similar.

- Serious under-coverage rates for group 1.
MSE estimation after preliminary model testing

• Test $H_0 : \sigma^2_v = 0$ at level α. For small m, Datta et al. (2011) proposed PT estimator: Use synthetic estimator $z_i' \hat{\beta}_{PT}$ if H_0 is not rejected and retain $\hat{\theta}_i^{EB}$ otherwise. In the PT literature, $\alpha = 0.2$ is recommended. In this case, MSE of PT and EB estimators practically the same.

• Molina et al. (2015): Use $mse_{PT}(\hat{\theta}_i^{EB}) = g_{2i}(0)$ if H_0 not rejected or $\hat{\sigma}_v^2 = 0$, and PR MSE estimator if H_0 rejected and $\hat{\sigma}_v^2 > 0$. Performed well in simulations in terms of RB. Avoid zero $\hat{\sigma}_v^2$ (Yoshimori and Lahiri 2014): AML.
Misspecified linking model

• Best estimator of area mean under “working” FH linking model. Only sampling model assumed to be correct.

• Minimizing estimator of total design MSE of best estimators w.r.t. β and σ^2_v gives best predictive estimators (BPE) of β and σ^2_v. Resulting EB estimator is observed best predictor (OBP). Performed well under linking model misspecification (Jiang et al. 2011)

• MSE estimation of OBP (Chen et al. 2019): One-bring-one-Route (OBOR)
Unmatched or mismatched models

- **Linking model:** $h(\theta_i) = z_i'\beta + \nu_i$ with specified function $h(.)$ and sampling model $\hat{\theta}_i = \theta_i + e_i$, where $\hat{\theta}_i$ is unbiased or approximately unbiased. Sugasawa et al. (2018): EB estimation and associated MSE estimation.

- **HB estimation under unknown link function** $h(.)$ using P-spline mixed model formulation (Sugasawa et al., 2018).
Big data as covariates

- Marchetti et al. (2015): GPS data on car mobility used to create mobility index related to poverty rate and household income in Italy. Advantage: GPS data also available for non-sampled local areas.

- Schmidt et al. (2017): Mobile phone data as covariate to estimate literacy level at the commune level in Senegal. Direct estimates obtained from a probability sample.
Two-fold area level models

- Sampling model $\hat{\theta}_{ij} = \theta_{ij} + e_{ij}$ for sampled sub-area j within area i. Torabi and Rao (2014) studied EB estimation of area means and sub-area means under matched linking model: $\theta_{ij} = z'_{ij}\beta + v_i + e_{ij}$. Advantage: Efficient estimators for non-sampled sub-areas.

- Erciulescu et al. (2017) used HB for county crop estimation satisfying benchmarking.
• PIAAC project of Westat: Three-fold area level model using HB.

• Mohadjer et al. (2012) extended the two-fold matched model to unmatched case using HB to get county-level adult literacy estimates using NAAL data.

• Cai et al. (2019): EB estimation for two-fold unmatched model.
Unit level models

- **Basic unit level model:** \(y_{ij} = x'_{ij} \beta + v_i + e_{ij} \) with \(v_i \sim iid \ N(0, \sigma_v^2) \) and independent of \(e_{ij} \sim N(0, \sigma_e^2) \), see Rao and Molina (2015, ch. 7) for estimation of area means and MSE estimation.

- **Bias-corrected outlier robust estimators and associated MSE estimation** (Chambers et al. 2014).
Informative sampling within areas

- Model design weights within areas and develop bias adjusted EB estimator (Pfeffermann and Sverchkov 2011). Extends to sampling of areas.

- Augmented unit level models with specified function of within area selection probability as augmenting variable and $m = M$ (Verret et al. 2015).

- Augmented unit level models with unspecified function approximated by P-spline (Cai et al. 2017).
SAE using record linkage with big data

- Unit level covariates x_{ij} obtained from external source and matched to sample y_{ij}. Estimation under linkage errors studied by Han and Lahiri (2017) and Chambers et al. (2019), assuming non-informative sampling within areas.

Regression tree methods for SAE

- Lohr (2008) and Toth and McConville (2019)
Some extensions

• Estimation of complex small area parameters: Poverty indicators using EB or HB estimation

• Bivariate area level models

• Time series models and spatio-temporal models

• SAE estimation after model selection
Multilevel Regression and Poststratification (MRP)

• Find vector of variables X that affect the sample design, nonresponse and coverage (Gelman team).

• **Assumption:** Given X, the distribution of inclusion indicator is ignorable. Discretize the variables and cross classify to for a very large number of post strata and sampling within poststrata is SRS. Most poststrata are empty.

• Bayes estimates of poststrata means are obtained assuming a multilevel model and known poststrata counts. Small areas are unions of poststrata.
Production of small area official statistics

• “From start to finish: a framework for the production of small area official statistics” (Tzavidis et al. 2019). Parsimony and evaluation. Model-dependent methods with focus on model selection and testing, model diagnostics. Application to estimation of non-linear deprivation indicators.

• Software for HB: Erciulescu (2019) and Chen et al. (2019)