Discussion of

How Errors Cumulate: Two Examples

Jill A. Dever, PhD
jdever@rti.org

2018 Morris Hansen Award Lecture
Washington, DC
“Weighting can improve things, but representative data are better”

(Tourangeau, a few minutes ago)
The Dreaded “Bias” Word

Coverage Bias for Internet Surveys (Pew Research Center 2018a-c)
- ~2 of every 3 adults have broadband service at home
- Smartphone coverage ~77%
- Methods to access internet ‌; ~11% with no use

Selection and Nonresponse Bias
- Confounded with nonprobability survey data
- Post-sampling nonresponse bias available for web panels
Commentary on “The Gold Standard”

Choice gold standard can be difficult:

- NHIS, BRFSS estimates for flu vaccination (Dever et al. forthcoming)
- CPS differences by month (Nadimpalli et al. 2004)
- Combine to strengthen (Schenker & Raghunathan 2007)

Differs by type of estimators:

- Estimated totals vs. ratio estimates (Dever & Valliant 2016)
- Univariate vs. multivariate statistics (Amaya & Presser 2016)
Estimation with Survey Data

General purpose weights:
- Known to produce efficient estimates for some but not all estimates for data from probability-based surveys

Variance estimation with nonprobability surveys:
- Speculation that replicate estimates are “the way to go”
Multiple Sources for Web Surveys

- Opt-in web panels
- Pop-up Surveys
- Twitter
- Facebook
- Snapchat
- Mechanical Turk
- SurveyMonkey
- Web-scraping
- Data warehouses

Different TSE properties, e.g., different coverage

Convenience, Matched, or Network (Baker et al. 2013)
Is One Source Adequate for Population Inference?

“Poor population coverage is difficult to overcome” (Valliant 2018)

Dual-frame estimation (e.g., Lohr & Raghunathan 2017)

- Landline random-digit-dial surveys no longer exist
- Targeted frames for specialized populations, e.g., surname lists

\[
\hat{t}_y = \sum_{S_{A \cap B}} \lambda_k \hat{y}_{Ak} + \sum_{S_{B \cap A}} (1 - \lambda_k) \hat{y}_{Bk}
\]

= “A” weighted estimate + “B” weighted estimate

where \(\lambda_k \leq 1 \) is the composite factor
Combine Probability and Nonprobability Data

- Opinions of marijuana usage among adults (Allen et al. 2018)
- Methods for creating hybrid estimates using:
 - data on injury outcomes from vehicle crashes (Elliott 2009)
 - surveys of military caregivers (Robbins et al. 2017)
 - generic surveys characteristics (Elliott & Haviland 2007)

Combine Multiple Nonprobability Data Sources

- Social media to access LGBTQ youths (Berzofsky et al. in press)
- Social media to access marijuana users (Kott 2018)
Hybrid Estimation for Population Inference

- Probability Sample
- Adjusted Respondent Weights
- Hybrid Weights
- Population Estimates
- Convenience Sample
- Participant Weights?
Hybrid Estimation – Nonprobability Weights

- Quasi-randomization “pseudo” weights
 - Propensity scores (Valliant & Dever 2018, 2011)
 - Statistical matching (Ho et al. 2007, 2011; Dever 2018)
 - Bayes method (Robbins et al. 2017; Elliott 2009)
- Weight calibration
- Superpopulation “prediction” approach (Valliant et al. 2000)
- Multilevel regression & poststratification (Wang et al. 2015)

Informative covariates are critical (Mercer et al. 2018; Valliant 2018)
Hybrid Estimation – Additional Adjustments

- **Estimated-control calibration** (Dever 2010, 2018; Dever & Valliant 2016)
- **Adjustments for bias** (Brick et al. 2011)
- **Common support** (Dever 2018)

\[
\hat{t}_y = \sum_{s_{A\cap B}} \lambda_k \hat{y}_{Ak} + \sum_{s_{B\cap A}} (1 - \lambda_k) \hat{y}_{Bk} \quad \text{common support}
\]

\[
+ \sum_{s_A} \hat{y}_{Ak} \quad \text{survey-specific components}
\]

\[
+ \sum_{s_B} \hat{y}_{Bk}
\]
More Research is Needed into Hybrid Estimation

- Interplay between errors for each data source and among the data sources is critical
 - TSE for hybrid estimation
- Methods to maximize information from multiple sources
- Evaluate in the context of estimators

Congratulations Tex!